Do as many of the eight problems as you can. Four problems done correctly will be a clear pass. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in. The word “smooth” means C^∞, and all manifolds are assumed to be smooth and without boundary unless otherwise specified.

1. Let $T^n = S^1 \times \cdots \times S^1$ denote the n-torus, and let M be a connected topological manifold with finite fundamental group. Show that any continuous map from M to T^n is homotopic to a constant map.

2. Represent the Möbius strip as the quotient space of the square $[-1,1] \times [-1,1]$ by identifying $(1,y)$ with $(-1,-y)$ for $-1 \leq y \leq 1$. Its boundary (as a manifold with boundary) is the image of the set $\{(x,y) \in [-1,1] \times [-1,1] : |y| = 1\}$ under the quotient map. Prove that there does not exist a retraction from the Möbius strip to its boundary.

3. Let X be a complete, smooth vector field on \mathbb{R}^2, and let ϕ denote its flow. We say X is area-preserving if $\phi_t^*(dA) = dA$ for all t, where $dA = dx \wedge dy$ is the standard area form. Show that X is area-preserving if and only if there exists a function $f \in C^\infty(\mathbb{R}^2)$ such that

$$X = \frac{\partial f}{\partial y} \frac{\partial}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial}{\partial y}.$$

[Hint: Think about the Lie derivative of dA with respect to X.]

4. For each of the following vector fields on \mathbb{R}, find the flow and determine whether the vector field is complete.

$$X = x \frac{\partial}{\partial x},$$

$$Y = x^2 \frac{\partial}{\partial x}.$$

5. Define a subset $S \subset \mathbb{R}^4$ by

$$S = \{(x,y,u,v) : x^2 + y^2 - 2uv = x^2 - y^2 + u^2 - v^2 = 0\}.$$

(a) Prove that there exist open sets $U,V \subset \mathbb{R}^2$ such that $(-1,1,1,1) \in U \times V$, and smooth functions $\alpha, \beta : U \rightarrow \mathbb{R}$ with the following property: $(x,y,u,v) \in S \cap (U \times V)$ if and only if $(x,y) \in U$, $u = \alpha(x,y)$, and $v = \beta(x,y)$.

(b) Compute the following partial derivatives at $(x,y) = (-1,1)$:

$$\frac{\partial \alpha}{\partial x}, \frac{\partial \alpha}{\partial y}, \frac{\partial \beta}{\partial x}, \frac{\partial \beta}{\partial y}.$$
6. Suppose \((M, g)\) is a Riemannian manifold, and \(f: M \to \mathbb{R}\) is a smooth proper map such that \(|\text{grad } f|_g \equiv 1\). (Recall that a map is proper if the inverse image of every compact set is compact.)

(a) If \(\phi\) is the flow of \(\text{grad } f\), show that \(f(\phi_t(x)) = t + f(x)\) whenever \((t, x) \in \mathbb{R} \times M\) is in the domain of \(\phi\).

(b) Show that \(\text{grad } f\) is complete.

7. The Heisenberg group is the Lie group whose underlying manifold is \(\mathbb{R}^3\), with the following group structure:

\[
(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + xy' - yx').
\]

(You may accept without proof that it is a Lie group. Its identity element is \((0, 0, 0)\), and the inverse of \((x, y, z)\) is \((-x, -y, -z)\).)

(a) Compute the left-invariant vector fields \(X, Y, Z\) whose values at the identity are

\[
X|_{(0,0,0)} = \frac{\partial}{\partial x},
Y|_{(0,0,0)} = \frac{\partial}{\partial y},
Z|_{(0,0,0)} = \frac{\partial}{\partial z}.
\]

(b) Show that the distribution spanned by \(X\) and \(Z\) is integrable, but the one spanned by \(X\) and \(Y\) is not.

8. Let \(M\) be a smooth, oriented, compact \(n\)-manifold without boundary and let \(I\) be the interval \([0, 1]\). Suppose \(\alpha\) is a \(p\)-form and \(\beta\) is an \((n-p)\)-form, both defined and smooth on \(M \times I\). Prove the following “integration-by-parts formula”:

\[
\int_{M \times I} d\alpha \wedge \beta = \left[\int_M \alpha \wedge \beta \right]_{t=0}^{t=1} - (-1)^p \int_{M \times I} \alpha \wedge d\beta.
\]

(Here \(t\) is the coordinate on \(I\).)