Topology and Geometry of Manifolds Preliminary Exam September 2008

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.
The word "smooth" means C^{∞}, and all manifolds are assumed to be without boundary.

1. Which 2-manifolds M admit a covering map $\pi: S^{2} \rightarrow M$?
2. Let f be a smooth real-valued function defined on an open subset $U \subseteq \mathbb{R}^{n}$. We say f is harmonic if

$$
\sum_{i=1}^{n} \frac{\partial^{2} f}{\left(\partial x^{i}\right)^{2}}=0
$$

Show that f is harmonic if and only if for every $p \in U$ and every positive number r less than the distance from p to ∂U,

$$
\sum_{i=1}^{n}(-1)^{i} \int_{S_{r}(p)} \frac{\partial f}{\partial x^{i}} d x^{1} \wedge \cdots \wedge \widehat{d x^{i}} \wedge \cdots \wedge d x^{n}=0
$$

where $S_{r}(p)$ is the sphere of radius r around p, and $\widehat{d x^{i}}$ indicates that $d x^{i}$ is omitted from the wedge product.
3. Let V be the following vector field on $M=\left\{(x, y, z) \in \mathbb{R}^{3}: x>0\right\}$:

$$
V=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+x y \frac{\partial}{\partial z} .
$$

(a) Determine the flow of V.
(b) A function $f: M \rightarrow \mathbb{R}$ is said to be V-invariant if it is invariant under the flow of V, or equivalently if it is constant along the integral curves of V. Find the V-invariant functions.
4. Which (if any) of the following spaces are simply connected?
(a) The space N^{n} of $n \times n$ nilpotent matrices over $\mathbb{R}, n \geq 1$, with the subspace topology inherited from $\mathbb{R}^{n^{2}}$. (A square matrix A is nilpotent if $A^{k}=0$ for some positive integer k.)
(b) $\mathbb{C}^{n} \backslash H$, where H is any complex linear subspace of dimension $n-1$.
(c) The space $V_{2} \mathbb{R}^{n}$ of orthonormal ordered pairs of vectors in $\mathbb{R}^{n}, n \geq 4$, with the subspace topology inherited from $\mathbb{R}^{n} \times \mathbb{R}^{n}$. (Suggestion: Note that $V_{2} \mathbb{R}^{n}$ can be identified with the space of unit tangent vectors of S^{n-1}.)
5. (a) If ω is a nonvanishing smooth 1-form on a smooth manifold, show that the distribution annihilated by ω is integrable if and only if $\omega \wedge d \omega=0$.
(b) If X is a nonvanishing smooth vector field on \mathbb{R}^{3}, prove that the following conditions are equivalent.
i. Every point in \mathbb{R}^{3} has a neighborhood U on which there exist smooth functions $f, g: U \rightarrow \mathbb{R}$ such that the restriction of X to U is equal to $f \operatorname{grad} g$.
ii. curl X is everywhere orthogonal to X.
6. Let G be a compact Lie group. Show that G satisfies the descending chain condition for closed subgroups: If $H_{1} \supseteq H_{2} \supseteq H_{3} \ldots$, with H_{i} a closed subgroup of G for each i, then there exists n such that $H_{k}=H_{k+1}$ for all $k \geq n$.
7. Suppose $F: S^{3} \rightarrow S^{2}$ is a smooth map.
(a) Show that there exist a smooth 2 -form ω on S^{2} such that $\int_{S^{2}} \omega=1$, and a smooth 1-form on S^{3} such that $F^{*} \omega=d \eta$.
(b) For any forms ω and η as above, show that $\int_{S^{3}} \eta \wedge d \eta$ depends only on F, not on the choice of ω or η.
8. Let $\mathrm{O}(n)$ denote the orthogonal group. A reflection is a non-identity element $A \in \mathrm{O}(n)$ that fixes every point in some linear ($n-1$)-dimensional subspace of \mathbb{R}^{n}. Let $\mathcal{R}_{n} \subseteq O(n)$ denote the subset consisting of all reflections. Show that \mathcal{R}_{n} is a smooth embedded submanifold and is diffeomorphic to the real projective space $R P^{n-1}$. (Suggestion: It might be useful to consider the action of $\mathrm{O}(n)$ on itself by conjugation.)

