Topology and Geometry of Manifolds Preliminary Exam September 2008

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

The word "smooth" means C^{∞} , and all manifolds are assumed to be without boundary.

- 1. Which 2-manifolds M admit a covering map $\pi: S^2 \to M$?
- 2. Let f be a smooth real-valued function defined on an open subset $U \subseteq \mathbb{R}^n$. We say f is *harmonic* if

$$\sum_{i=1}^{n} \frac{\partial^2 f}{(\partial x^i)^2} = 0.$$

Show that f is harmonic if and only if for every $p \in U$ and every positive number r less than the distance from p to ∂U ,

$$\sum_{i=1}^{n} (-1)^{i} \int_{S_{r}(p)} \frac{\partial f}{\partial x^{i}} dx^{1} \wedge \dots \wedge \widehat{dx^{i}} \wedge \dots \wedge dx^{n} = 0,$$

where $S_r(p)$ is the sphere of radius r around p, and $\widehat{dx^i}$ indicates that dx^i is omitted from the wedge product.

3. Let V be the following vector field on $M = \{(x, y, z) \in \mathbb{R}^3 : x > 0\}$:

$$V = x\frac{\partial}{\partial x} - y\frac{\partial}{\partial y} + xy\frac{\partial}{\partial z}.$$

- (a) Determine the flow of V.
- (b) A function $f: M \to \mathbb{R}$ is said to be *V*-invariant if it is invariant under the flow of *V*, or equivalently if it is constant along the integral curves of *V*. Find the *V*-invariant functions.
- 4. Which (if any) of the following spaces are simply connected?
 - (a) The space N^n of $n \times n$ nilpotent matrices over \mathbb{R} , $n \geq 1$, with the subspace topology inherited from \mathbb{R}^{n^2} . (A square matrix A is *nilpotent* if $A^k = 0$ for some positive integer k.)
 - (b) $\mathbb{C}^n \smallsetminus H$, where H is any complex linear subspace of dimension n-1.
 - (c) The space $V_2\mathbb{R}^n$ of orthonormal ordered pairs of vectors in \mathbb{R}^n , $n \ge 4$, with the subspace topology inherited from $\mathbb{R}^n \times \mathbb{R}^n$. (Suggestion: Note that $V_2\mathbb{R}^n$ can be identified with the space of unit tangent vectors of S^{n-1} .)

- 5. (a) If ω is a nonvanishing smooth 1-form on a smooth manifold, show that the distribution annihilated by ω is integrable if and only if $\omega \wedge d\omega = 0$.
 - (b) If X is a nonvanishing smooth vector field on \mathbb{R}^3 , prove that the following conditions are equivalent.
 - i. Every point in \mathbb{R}^3 has a neighborhood U on which there exist smooth functions $f, g: U \to \mathbb{R}$ such that the restriction of X to U is equal to f grad g.
 - ii. $\operatorname{curl} X$ is everywhere orthogonal to X.
- 6. Let G be a compact Lie group. Show that G satisfies the descending chain condition for closed subgroups: If $H_1 \supseteq H_2 \supseteq H_3 \ldots$, with H_i a closed subgroup of G for each i, then there exists n such that $H_k = H_{k+1}$ for all $k \ge n$.
- 7. Suppose $F: S^3 \to S^2$ is a smooth map.
 - (a) Show that there exist a smooth 2-form ω on S^2 such that $\int_{S^2} \omega = 1$, and a smooth 1-form on S^3 such that $F^*\omega = d\eta$.
 - (b) For any forms ω and η as above, show that $\int_{S^3} \eta \wedge d\eta$ depends only on F, not on the choice of ω or η .
- 8. Let O(n) denote the orthogonal group. A reflection is a non-identity element $A \in O(n)$ that fixes every point in some linear (n-1)-dimensional subspace of \mathbb{R}^n . Let $\mathcal{R}_n \subseteq O(n)$ denote the subset consisting of all reflections. Show that \mathcal{R}_n is a smooth embedded submanifold and is diffeomorphic to the real projective space $\mathbb{R}P^{n-1}$. (Suggestion: It might be useful to consider the action of O(n) on itself by conjugation.)