Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

The word “smooth” means C^∞, and all manifolds are assumed to be without boundary.

1. Which 2-manifolds M admit a covering map $\pi : S^2 \to M$?

2. Let f be a smooth real-valued function defined on an open subset $U \subseteq \mathbb{R}^n$. We say f is harmonic if
 \[\sum_{i=1}^{n} \frac{\partial^2 f}{(\partial x^i)^2} = 0. \]
 Show that f is harmonic if and only if for every $p \in U$ and every positive number r less than the distance from p to ∂U,
 \[\sum_{i=1}^{n} (-1)^i \int_{S_r(p)} \frac{\partial f}{\partial x^i} dx^1 \wedge \cdots \wedge \hat{dx^i} \wedge \cdots \wedge dx^n = 0, \]
 where $S_r(p)$ is the sphere of radius r around p, and $\hat{dx^i}$ indicates that dx^i is omitted from the wedge product.

3. Let V be the following vector field on $M = \{(x, y, z) \in \mathbb{R}^3 : x > 0\}$:
 \[V = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y} + xy \frac{\partial}{\partial z}. \]
 (a) Determine the flow of V.
 (b) A function $f : M \to \mathbb{R}$ is said to be V-invariant if it is invariant under the flow of V, or equivalently if it is constant along the integral curves of V. Find the V-invariant functions.

4. Which (if any) of the following spaces are simply connected?
 (a) The space N^n of $n \times n$ nilpotent matrices over \mathbb{R}, $n \geq 1$, with the subspace topology inherited from \mathbb{R}^{n^2}. (A square matrix A is nilpotent if $A^k = 0$ for some positive integer k.)
 (b) $\mathbb{C}^n \setminus H$, where H is any complex linear subspace of dimension $n - 1$.
 (c) The space $V_2\mathbb{R}^n$ of orthonormal ordered pairs of vectors in \mathbb{R}^n, $n \geq 4$, with the subspace topology inherited from $\mathbb{R}^n \times \mathbb{R}^n$. (Suggestion: Note that $V_2\mathbb{R}^n$ can be identified with the space of unit tangent vectors of S^{n-1}.)
5. (a) If ω is a nonvanishing smooth 1-form on a smooth manifold, show that the distribution annihilated by ω is integrable if and only if $\omega \wedge d\omega = 0$.

(b) If X is a nonvanishing smooth vector field on \mathbb{R}^3, prove that the following conditions are equivalent.

 i. Every point in \mathbb{R}^3 has a neighborhood U on which there exist smooth functions $f, g: U \to \mathbb{R}$ such that the restriction of X to U is equal to $f \text{grad} g$.

 ii. $\text{curl} X$ is everywhere orthogonal to X.

6. Let G be a compact Lie group. Show that G satisfies the descending chain condition for closed subgroups: If $H_1 \supseteq H_2 \supseteq H_3 \ldots$, with H_i a closed subgroup of G for each i, then there exists n such that $H_k = H_{k+1}$ for all $k \geq n$.

7. Suppose $F: S^3 \to S^2$ is a smooth map.

 (a) Show that there exist a smooth 2-form ω on S^2 such that $\int_{S^2} \omega = 1$, and a smooth 1-form on S^3 such that $F^* \omega = d\eta$.

 (b) For any forms ω and η as above, show that $\int_{S^3} \eta \wedge d\eta$ depends only on F, not on the choice of ω or η.

8. Let $O(n)$ denote the orthogonal group. A reflection is a non-identity element $A \in O(n)$ that fixes every point in some linear $(n-1)$-dimensional subspace of \mathbb{R}^n. Let $\mathcal{R}_n \subseteq O(n)$ denote the subset consisting of all reflections. Show that \mathcal{R}_n is a smooth embedded submanifold and is diffeomorphic to the real projective space RP^{n-1}. (Suggestion: It might be useful to consider the action of $O(n)$ on itself by conjugation.)