Topology and Geometry of Manifolds Preliminary Exam September 17, 2009

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in. The word "smooth" means C^{∞} . Unless otherwise specified, manifolds and associated structures (e.g., maps, vector fields, differential forms) are assumed to be smooth, and manifolds assumed to be without boundary.

- 1. Let $A = \{(x, y) \in \mathbb{R}^2 : y^2 = x^2\}$ and $B = \{(x, y) \in \mathbb{R}^2 : y^2 = x^2(x+1)\}$. Prove that exactly one of these two plane curves admits a 2-sheeted connected covering, and give such a covering. You should give the covering space explicitly, but may indicate the covering map by pictures and description.
- 2. For each positive integer n, let S_n be the circle of radius 1/n centered at (1/n, 0) and let C be the cone over the union of these circles. (So if we include \mathbb{R}^2 into \mathbb{R}^3 in the usual way and let P = (0, 0, 1) be the vertex of the cone, we may represent C as

$$C = \bigcup_{n=1}^{\infty} \{ (1-t)Q + tP \in \mathbb{R}^3 : 0 \leq t \leq 1, Q \in S_n \}. \}$$

Prove that the fundamental group of the wedge sum of two copies of C depends on the choice of base points for the wedge sum by showing that

$$\pi_1((C, P) \lor (C, P)) \neq \pi_1((C, O) \lor (C, O)),$$

where O is the origin, (0,0,0).

3. Show that

$$M = \{ (Y, Z) \in \mathbb{R}^3 \times \mathbb{R}^3 : Y \times Z = (0, 0, 1) \}$$

is a smoothly embedded submanifold of $\mathbb{R}^6 = \mathbb{R}^3 \times \mathbb{R}^3$ that is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}^2$, where \mathbb{S}^1 is the unit circle. (In $Y \times Z$, the symbol \times indicates the ordinary cross product of vector calculus.)

- 4. Let $S = \{(x, y, z) \in \mathbb{R}^3 : 9x^2 + y^2 + z^2 = 9 \text{ and } y + z \ge 0\},$ and let $\omega = x^2 dx \wedge dy + 3y dx \wedge dz + \ln(y + z + 1) dy \wedge dz.$ Evaluate $\int_S \omega$, where S is oriented by the normal pointing away from the origin.
- 5. Let M be a compact manifold with a volume form Ω . Define a bilinear function on the set $C^{\infty}(M)$ of smooth functions on M by $\langle f, g \rangle = \int_{M} fg\Omega$. Recall that the divergence div(X) of a vector field X on M is given by div $(X)\Omega = \mathcal{L}_{X}\Omega$. Show that if div(X) = 0, then X is skew-symmetric with respect to \langle , \rangle as an operator on $C^{\infty}(M)$: $\langle X(f), g \rangle = -\langle f, X(g) \rangle$.

6. Show that on the 3-sphere \mathbb{S}^3 , there cannot be three vectors fields, say X_j , j = 1, 2, 3, that are linearly independent everywhere and commute: that is, $[X_i, X_j] = 0$ everywhere. Hint: Consider the coframe dual to $\{X_1, X_2, X_3\}$.

[It is known that there are three non-commuting vector fields on \mathbb{S}^3 that are linearly independent everywhere, but you need not show this.]

7. Let ω be a closed differential 2-form on a manifold M. Recall that $(i_X \omega)(Y) = \omega(X, Y)$. The kernel of ω is ker $\omega = \bigcup_{p \in M} \ker_p \omega$, where

 $\ker_p \omega = \{ X \in T_p M : i_X \omega = 0; \text{ that is, } \omega(X, Y) = 0 \text{ for all } Y \in T_p M \}.$

Suppose that the dimension of $\ker_p \omega$ is constant on M; you may use without proof the fact that this implies $\ker \omega$ is an integrable distribution.

- (a) For a smooth function $f: M \to \mathbb{R}$, show that df vanishes on ker ω if and only if there is a smooth vector field X on M such that $i_X \omega = df$. (Note that if ker ω is nontrivial, X will not be unique.)
- (b) Suppose f is a smooth function on M and $i_X \omega = df$. Show that the Lie derivatives $\mathcal{L}_X f$ and $\mathcal{L}_X \omega$ vanish.
- 8. Let $\mathbb{G} = G_2(\mathbb{R}^4)$ be the Grassmannian of 2-dimensional linear subspaces of \mathbb{R}^4 . You may assume that \mathbb{G} is a compact, homogeneous SO(4)-manifold with the obvious action: that is, for $V \in \mathbb{G}$ and $g \in SO(4)$, let $gV = \{gx : x \in V\}$. In particular this means \mathbb{G} may be identified with the quotient of SO(4) by the isotropy subgroup I of the plane $\{(x, y, 0, 0) \in \mathbb{R}^4 : x, y \in \mathbb{R}\}$.

Let Λ be the 6-dimensional vector space spanned by wedge products $v_1 \wedge v_2$ for $v_1, v_2 \in \mathbb{R}^4$; thus Λ is the vector space of contravariant alternating 2-tensors on \mathbb{R}^4 . Let \mathbb{P} be the projective space of 1-dimensional subspaces of Λ .

(a) Define a map $\psi : \mathbb{G} \to \mathbb{P}$ as follows: For each 2-dimensional subspace V of \mathbb{R}^4 , let $\psi(V) = [v_1 \wedge v_2]$, where $\{v_1, v_2\}$ is any basis for V. Prove ψ is well-defined and is a smooth embedding. Hint: To prove smoothness, use the identification of \mathbb{G} with $\mathrm{SO}(4)/I$.

[The map ψ is called the "Plücker embedding."]

(b) Let $L \subset \mathbb{R}^4$ be a 1-dimensional subspace and $H \subset \mathbb{R}^4$ a 3-dimensional subspace containing L. Define

$$\Sigma = \{ V \in \mathbb{G} : L \subset V \subset H \}.$$

Show that ψ maps Σ onto a line in \mathbb{P} , where a line in \mathbb{P} is the image of a two dimensional subspace of Λ .