Topology and Geometry of Manifolds Preliminary Exam

September 17, 2009

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in. The word "smooth" means C^{∞}. Unless otherwise specified, manifolds and associated structures (e.g., maps, vector fields, differential forms) are assumed to be smooth, and manifolds assumed to be without boundary.

1. Let $A=\left\{(x, y) \in \mathbb{R}^{2}: y^{2}=x^{2}\right\}$ and $B=\left\{(x, y) \in \mathbb{R}^{2}: y^{2}=x^{2}(x+1)\right\}$. Prove that exactly one of these two plane curves admits a 2 -sheeted connected covering, and give such a covering. You should give the covering space explicitly, but may indicate the covering map by pictures and description.

2. For each positive integer n, let S_{n} be the circle of radius $1 / n$ centered at $(1 / n, 0)$ and

 let C the cone over the union of these circles. (So if we include \mathbb{R}^{2} into \mathbb{R}^{3} in the usual way and Let $P=(0,0,1)$ be the vertex of the cone, we may represent C as

Prove that the fundamental grour of the wedge swin of two copies of C depends on the choice of base points for the wedge sum by showing that

$$
\pi_{1}((C, P) \vee(C, P)) \neq \pi_{1}((C, O) \vee(C, O))
$$

Where O is the origin, $(0,0,0)$.
3. Show that

$$
M=\left\{(Y, Z) \in \mathbb{R}^{3} \times \mathbb{R}^{3}: Y \times Z=(0,0,1)\right\}
$$

is a smoothly embedded submanifold of $\mathbb{R}^{6}=\mathbb{R}^{3} \times \mathbb{R}^{3}$ that is diffeomorphic to $\mathbb{S}^{1} \times \mathbb{R}^{2}$, where \mathbb{S}^{1} is the unit circle. (In $Y \times Z$, the symbol \times indicates the ordinary cross product of vector calculus.)
4. Let $S=\left\{(x, y, z) \in \mathbb{R}^{3}: 9 x^{2}+y^{2}+z^{2}=9\right.$ and $\left.y+z \geq 0\right\}$,
and let $\quad \omega=x^{2} d x \wedge d y+3 y d x \wedge d z+\ln (y+z+1) d y \wedge d z$.
Evaluate $\int_{S} \omega$, where S is oriented by the normal pointing away from the origin.
5. Let M be a compact manifold with a volume form Ω. Define a bilinear function on the set $C^{\infty}(M)$ of smooth functions on M by $\langle f, g\rangle=\int_{M} f g \Omega$. Recall that the divergence $\operatorname{div}(X)$ of a vector field X on M is given by $\operatorname{div}(X) \Omega=\mathcal{L}_{X} \Omega$. Show that if $\operatorname{div}(X)=0$, then X is skew-symmetric with respect to \langle,$\rangle as an operator on C^{\infty}(M)$: $\langle X(f), g\rangle=-\langle f, X(g)\rangle$.
6. Show that on the 3 -sphere \mathbb{S}^{3}, there cannot be three vectors fields, say $X_{j}, j=1,2,3$, that are linearly independent everywhere and commute: that is, $\left[X_{i}, X_{j}\right]=0$ everywhere. Hint: Consider the coframe dual to $\left\{X_{1}, X_{2}, X_{3}\right\}$.
[It is known that there are three non-commuting vector fields on \mathbb{S}^{3} that are linearly independent everywhere, but you need not show this.]
7. Let ω be a closed differential 2-form on a manifold M. Recall that $\left(i_{X} \omega\right)(Y)=\omega(X, Y)$. The kernel of ω is $\operatorname{ker} \omega=\bigcup_{p \in M} \operatorname{ker}_{p} \omega$, where

$$
\operatorname{ker}_{p} \omega=\left\{X \in T_{p} M: i_{X} \omega=0 ; \text { that is, } \omega(X, Y)=0 \text { for all } Y \in T_{p} M\right\} .
$$

Suppose that the dimension of $\operatorname{ker}_{p} \omega$ is constant on M; you may use without proof the fact that this implies $\operatorname{ker} \omega$ is an integrable distribution.
(a) For a smooth function $f: M \rightarrow \mathbb{R}$, show that $d f$ vanishes on $\operatorname{ker} \omega$ if and only if there is a smooth vector field X on M such that $i_{X} \omega=d f$. (Note that if $\operatorname{ker} \omega$ is nontrivial, X will not be unique.)
(b) Suppose f is a smooth function on M and $i_{X} \omega=d f$. Show that the Lie derivatives $\mathcal{L}_{X} f$ and $\mathcal{L}_{X} \omega$ vanish.
8. Let $\mathbb{G}=G_{2}\left(\mathbb{R}^{4}\right)$ be the Grassmannian of 2-dimensional linear subspaces of \mathbb{R}^{4}. You may assume that \mathbb{G} is a compact, homogeneous $\mathrm{SO}(4)$-manifold with the obvious action: that is, for $V \in \mathbb{G}$ and $g \in \mathrm{SO}(4)$, let $g V=\{g x: x \in V\}$. In particular this means \mathbb{G} may be identified with the quotient of $\mathrm{SO}(4)$ by the isotropy subgroup I of the plane $\left\{(x, y, 0,0) \in \mathbb{R}^{4}: x, y \in \mathbb{R}\right\}$.

Let Λ be the 6 -dimensional vector space spanned by wedge products $v_{1} \wedge v_{2}$ for $v_{1}, v_{2} \in$ \mathbb{R}^{4}; thus Λ is the vector space of contravariant alternating 2 -tensors on \mathbb{R}^{4}. Let \mathbb{P} be the projective space of 1 -dimensional subspaces of Λ.
(a) Define a map $\psi: \mathbb{G} \rightarrow \mathbb{P}$ as follows: For each 2-dimensional subspace V of \mathbb{R}^{4}, let $\psi(V)=\left[v_{1} \wedge v_{2}\right]$, where $\left\{v_{1}, v_{2}\right\}$ is any basis for V. Prove ψ is well-defined and is a smooth embedding. Hint: To prove smoothness, use the identification of \mathbb{G} with $\operatorname{SO}(4) / I$.
[The map ψ is called the "Plücker embedding."]
(b) Let $L \subset \mathbb{R}^{4}$ be a 1-dimensional subspace and $H \subset \mathbb{R}^{4}$ a 3-dimensional subspace containing L. Define

$$
\Sigma=\{V \in \mathbb{G}: L \subset V \subset H\} .
$$

Show that ψ maps Σ onto a line in \mathbb{P}, where a line in \mathbb{P} is the image of a two dimensional subspace of Λ.

