Topology and Geometry of Manifolds Preliminary Exam September 15, 2011

Do as many of the eight problems as you can. Four problems done correctly will be a clear pass. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in. The word smooth means C^{∞}, and all manifolds are assumed to be smooth and without boundary unless otherwise specified.

continuous

1. Let X be a topological space and suppose that $\pi_{1}\left(X, x_{0}\right)$ is abelian. We say that the two loops $f, g:\left(S^{1}, e\right) \rightarrow$ $\left(X, x_{0}\right)$ are freely homotopic if there exists aknap $H: S^{1} \times[0,1] \rightarrow X$ with $H(z, 0)=f(z)$ and $H(z, 1)=g(z)$ for all $z \in S^{1}$. Note that $H(e, t)$ need not be the basepoint x_{0} for $0<t<1$.
Prove that if f and g are freely homotopic, then they are path homotopic.
2. Let $F(x, t)$ be a smooth real valued function defined in a neighborhood of $(0,0)$ in \mathbb{R}^{2}. Suppose that $F(0,0)=F_{x}(0,0)=F_{t}(0,0)=0$, and that the quadratic equation

$$
F_{x x}(0,0) w^{2}+2 F_{x t}(0,0) w+F_{t t}(0,0)=0
$$

has distinct real roots, $w_{1} \neq w_{2}$.
Prove that, inside a possibly smaller neighborhood of $(0,0)$, the level set $\{(x, t) \mid F(x, t)=0\}$ is the union of two smooth curves, $\left(x_{1}(t), t\right)$ and $\left(x_{2}(t), t\right)$, which intersect only at $(0,0)$.
Hint: You may use the fact (which follows from a Taylor expansion with remainder) that

$$
F(x, t)=A(x, t) x^{2}+2 B(x, t) x t+C(x, t) t^{2}
$$

with $A(0,0)=\frac{1}{2} F_{x x}(0,0), B(0,0)=\frac{1}{2} F_{x t}(0,0)$, and $C(0,0)=\frac{1}{2} F_{t t}(0,0)$. Look for $x_{1}(t)=t w_{1}(t)$ and $x_{2}(t)=t w_{2}(t)$.
3. Let X, Y, Z be the vector fields

$$
\begin{aligned}
X & =z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z} \\
Y & =-z \frac{\partial}{\partial x}+x \frac{\partial}{\partial z} \\
Z & =y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}
\end{aligned}
$$

on \mathbb{R}^{3}, and, for $(a, b, c) \in \mathbb{R}^{3}$, consider the vector field $W=a X+b Y+c Z$. Let $\Theta: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the flow of W and let $\Theta_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $\Theta_{t}(p)=\Theta(t, p)$.
Prove that Θ_{t} is a rotation about the vector $(a, b, c) \in \mathbb{R}^{3}$; i.e. $\Theta_{t} \in \mathrm{SO}(3)$ and $\Theta_{t}(a, b, c)=(a, b, c)$. In computing Θ_{t}, you will see that W is complete.
4. Suppose that M and N are smooth manifolds and that $\pi: M \rightarrow N$ is a surjective smooth submersion with connected fibers. We say that a tangent vector $X \in T_{p} M$ is vertical if $d \pi_{p}(X)=0$.
Let $\omega \in \Omega^{k}(M)$. Show that $\omega=\pi^{*} \eta$, for some $\eta \in \Omega^{k}(N)$, if and only if $\left.X\right\lrcorner \omega_{p}=0$ and $\left.X\right\lrcorner d \omega_{p}=0$ for every $p \in M$ and every vertical vector $X \in T_{p} M$.
Hint: Start by proving the result in the special case that $\pi: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ is a projection onto the first n coordinates.
5. Let $\left(M^{n}, g\right)$ denote an oriented Riemannian manifold. For each tangent vector $X_{p} \in T_{p}(M)$ we define a cotangent vector $\omega^{X_{p}} \in \Omega_{p}^{1}(M)$ by requiring that

$$
\omega^{X_{p}}=\left(X_{p}, \cdot\right)_{g}
$$

(a) Show that the formula $\left(\omega^{X_{p}}, \omega^{Y_{p}}\right)^{g}:=\left(X_{p}, Y_{p}\right)_{g}$ defines an inner product on the entire vector space $\Omega_{p}^{1}(M)$ (i.e. that every $\omega \in \Omega_{p}^{1}(M)=\omega^{X_{p}}$ for a unique X_{p}, and that $\left(\omega_{1}, \omega_{2}\right)^{g}$ is bilinear and positive).
(b) Let $\left\{\omega_{j}\right\}_{j=1 \ldots n}$ be a positively oriented orthonormal frame for $\Omega_{p}^{1}(M)$, and define an inner product on $\Omega_{p}^{k}(M)$ by declaring that the wedge products $\left\{\omega_{i_{1}} \wedge \omega_{i_{2}} \wedge \ldots \wedge \omega_{i_{k}}\right\}_{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n}$ form an orthonormal basis for $\Omega_{p}^{k}(M)$. The volume form $V^{g} \in \Omega^{n}(M)$ is then the unique n-form satisfying, at every p,

$$
V_{p}^{g}:=\omega_{1} \wedge \omega_{2} \wedge \ldots \wedge \omega_{n}
$$

For this problem, you should simply accept this fact that these definitions are independent of the choice of orthonormal frame.
For a pair of vector fields, X and Y, we define an $(n-2)$-form

$$
\eta^{X, Y}:=V^{g}(X, Y, \ldots)
$$

Prove that, for every $\theta \in \Omega^{2}(M)$,

$$
\eta^{X, Y} \wedge \theta=\left(\omega^{X} \wedge \omega^{Y}, \theta\right)^{g} V^{g}
$$

(c) Prove that, if X and Y are linearly independent vector fields satisfying $[X, Y]=0$, then there is a 1 -form θ such that $d \eta^{X, Y}=\theta \wedge \eta^{X, Y}$. This part of the problem does not depend on the previous parts.
6. Suppose that G and H are Lie groups, that G is connected, and that $\Phi: G \rightarrow H$ is a smooth map sending the identity of G to the identity of H, with the property that, for each left invariant vector field X, there exists a (necessarily unique) left invariant vector field Y on H which is Φ-related to X.
(a) Prove that Φ induces a map $\phi: \mathfrak{G} \rightarrow \mathfrak{H}$ of Lie algebras, where \mathfrak{G} is the Lie algebra of G and \mathfrak{H} is the Lie algebra of H.
(b) Prove that Φ is a Lie group homomorphism. Hint: Prove that the graph of Φ is a Lie subgroup of $G \times H$. What must the Lie algebra be?

connected

7. Let F be a smooth mapping from a compact oriented $\bigvee_{d \text {-dimensional manifold }} M$ to itself. Suppose that $m \in M$ is a regular point of F and its inverse image contains exactly N points. Let $\omega \in \Omega^{d}(M)$ satisfy $\int_{M} \omega \neq 0$. Show that
value

You may assume the fact that a d-form on d d-dimensional manifold which has integral zero is exact. You should prove any facts you use about the degree of a map.
8. Let $p: E \rightarrow B$ be a finite sheeted smooth covering map (with E connected), and let G denote the group of deck transformations of p. Suppose that G acts transitively on each fiber. The goal of this problem is to prove that $p^{*}: H_{d R}^{*} B \rightarrow\left(H_{d R}^{*}(E)\right)^{G}$ is an isomorphism, where $\left(H_{d R}^{*}(E)\right)^{G}$ denotes the G-fixed points of $H_{d R}^{*} E$.
(a) If $\omega \in \Omega^{k} E$, define $\operatorname{tr}(\omega) \in \Omega^{k} B$ by

$$
\operatorname{tr}(\omega)_{b}\left(X_{1}, \ldots, X_{k}\right)=\sum_{x \in p^{-1}(b)} \omega_{x}\left(\left(d p_{x}\right)^{-1} X_{1}, \ldots,\left(d p_{x}\right)^{-1} X_{k}\right)
$$

Prove that $\operatorname{tr}(\omega)$ is, in fact, smooth, and that $d \operatorname{tr}(\omega)=\operatorname{tr}(d \omega)$.
(b) Use part a to prove that $p^{*}: H_{d R}^{*} B \rightarrow\left(H_{d R}^{*}(E)\right)^{G}$ is one-to-one.
(c) Prove that $p^{*}: H_{d R}^{*} B \rightarrow\left(H_{d R}^{*}(E)\right)^{G}$ is onto. Hint: What is $p^{*}(\operatorname{tr}(\omega))$?

