Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

The word “smooth” means \(C^\infty \). Unless otherwise specified, manifolds and associated structures (e.g., maps, vector fields, differential forms) are assumed to be smooth, and manifolds assumed to be without boundary.

(1) Let \(G \) be a topological group with identity \(e \). Let \(* \) denote path multiplication as well as the multiplication on \(\pi_1(G, e) \); i.e., if \(\omega, \eta \) are loops in \(G \) based at \(e \), then \([\omega] * [\eta] = [\omega * \eta] \in \pi_1(G, e) \). Prove that

\[
[\omega] * [\eta] = [\omega \eta],
\]

where \((\omega \eta)(t) = \omega(t) \eta(t) \), the multiplication in \(G \) of \(\omega(t) \) and \(\eta(t) \).

(2) Let \(M \) be a smooth manifold and \(A \subset U \subset M \) with \(A \) a closed set and \(U \) an open set. Prove that if \(f : A \rightarrow \mathbb{R} \) is a smooth function, then there exists a smooth function \(\tilde{f} : M \rightarrow \mathbb{R} \) such that \(\tilde{f}|_A = f \) and \(\text{supp}(\tilde{f}) \subset U \).

(3) Suppose \(M \) is a compact nonempty manifold of dimension \(n, n > 0 \), and \(f : M \rightarrow \mathbb{R}^n \) is a smooth map. Show that \(f \) is not an immersion.

(4) Let \(G \) be a Lie group with identity \(e \). Prove that there exists a neighborhood \(U \) of \(e \) such that each element of \(U \) has a unique square root in \(U \) (i.e. prove that for each \(x \in U \) there exists a unique \(v \in U \) with \(v^2 = x \)).

Hint: You will likely need to make use of properties of the exponential map.
(5) Let $SL(n, \mathbb{R})$ be the Lie subgroup of $GL(n, \mathbb{R})$ consisting of all $n \times n$ matrices of determinant 1. Prove that the Lie algebra of $SL(n, \mathbb{R})$ is isomorphic to the Lie algebra of all $n \times n$ matrices of trace 0 with Lie bracket given by $[A, B] = AB - BA$. (You may use whatever facts you know about the Lie algebra of $GL(n, \mathbb{R})$.)

(6) Let

$$X = \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} + y \frac{\partial}{\partial z} \quad \text{and} \quad Y = y \frac{\partial}{\partial x} + z \frac{\partial}{\partial y} + \frac{\partial}{\partial z}$$

be vector fields on \mathbb{R}^3.

Does there exist a neighborhood U of the origin, and coordinates

$$\phi = (x_1, x_2, x_3) : U \rightarrow \mathbb{R}^3,$$

such that

$$X|_U = \frac{\partial}{\partial x_1} \quad \text{and} \quad Y|_U = \frac{\partial}{\partial x_2} ?$$

(Either prove the existence of such coordinates or demonstrate that no such coordinates exist.)

(7) Show that there exists a smooth manifold M, a point $x_0 \in M$ and $\gamma : [0, 1] \rightarrow M$ a smooth curve with $\gamma(0) = \gamma(1) = x_0$ such that $\int_{\gamma} \omega = 0$ for every smooth one-form ω on M, but with $[\gamma] \in \pi_1(M, x_0)$ not the identity element. (Some of you may recognize that this is a key step in proving that smoothly homotopic maps induce the same map in deRham cohomology.)

(8) Let M be an n-dimensional manifold. For each $t \in [0, 1]$, consider the map

$$i_t : M \rightarrow M \times [0, 1] \quad \text{given by} \quad i_t(m) = (m, t).$$

Let $\pi_M : M \times [0, 1] \rightarrow M$ denote the projection. If ω is a k-form on $M \times [0, 1]$, then ω can be written uniquely as

$$\omega = \omega_1 + (dt \wedge \eta)$$

where $\omega_1 \in \Omega^k(M \times [0, 1])$ is a k-form on $M \times [0, 1]$ and $\eta \in \Omega^{k-1}(M \times [0, 1])$ is a $k-1$-form on $M \times [0, 1]$ such that $X_\gamma \omega_1 = 0$ and $X_\gamma \eta = 0$ if $X \in \text{Ker}(\pi_M)_*$ (you do not have to prove this fact). Define

$$G : \Omega^i(M \times [0, 1]) \rightarrow \Omega^{i-1}(M)$$

by

$$G(\omega)_p(v_1, \ldots, v_{k-1}) = \int_0^1 \eta(p, t)(i_{t*}v_1, \ldots, i_{t*}v_{k-1}) dt.$$

Prove that

$$dG(\omega) + G(d\omega) = i^*_t \omega - i^*_0 \omega.$$

(Some of you may recognize that this is a key step in proving that smoothly homotopic maps induce the same map in deRham cohomology.)