Topology and Geometry of Manifolds Preliminary Exam September 15, 2016

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in. The word smooth means C^{∞}. Unless otherwise specified, manifolds and associated structures (e.g., maps, vector fields, differential forms) are assumed to be smooth, and manifolds are assumed to be without boundary. Subsets of \mathbb{R}^{n} are assumed to have the Euclidean topology, and \mathbb{R}^{n} is assumed to have its standard smooth structure.
(1) Suppose that M is an n-manifold embedded in \mathbb{R}^{n+1}. Prove that M is locally the graph of a real-valued function of n variables. More precisely, let $x=\left(x^{1}, x^{2}, \ldots, x^{n+1}\right)$ denote the standard coordinates on \mathbb{R}^{n+1} and let $\hat{x}_{k} \in \mathbb{R}^{n}$ denote the point obtained from x by removing the k-th coordinate. Show that for any point $p \in M \subset \mathbb{R}^{n+1}$, there is an integer k and a real-valued function f defined in an open neighborhood U of \hat{p}_{k} such that the set

$$
\left\{\left(x^{1}, \ldots, x^{k-1}, f\left(\hat{x}_{k}\right), x^{k+1}, \ldots, x^{n+1}\right) \mid \hat{x}_{k} \in U\right\}
$$

is an open neighborhood of p in M.
(2) (a) Let $U \subset \mathbb{R}^{2}$ be simply connected with x in the interior of U. Prove that the abelianization of $\pi_{1}(U \backslash\{x\})$ is isomorphic to \mathbb{Z}.
(b) Use part (a) to show that the union of the $x y$-plane with the $x z$-plane in \mathbb{R}^{3} is not a topological manifold of dimension 2. (This also follows from Invariance of Domain, but you will only receive partial credit if you use it.)

smooth

(3) Let M be a simply connected manifold and D a 1-dimensional distribution on M. Prove that there exists a vector field X on M such that X_{p} spans D_{p} for each $p \in M$.
smooth connected
(4) Let $f: P \rightarrow M$ be a map from a compact, oriehted, simply connected, 3 -dimensional manifold to a compact, oriented, \bigvee_{2}-dimensional manifold. (By the Poincaré Conjecture, $P=S^{3}$, but you will not need to use this.) Let ω be a 2-form on M with $\int_{M} \omega=1$. One can show that there is a 1 -form η such that $f^{*} \omega=d \eta$. Show that the number $\int_{P} \eta \wedge f^{*} \omega$ is independent of the choices of ω and η.
(5) Let M denote the set of unoriented triangles in \mathbb{R}^{3} with one vertex at the origin. Find a transitive action of a Lie group G on M and use it to identify M with a homogeneous space G / H. Show that this implies that M is naturally a connected, smooth manifold, and compute its dimension.
(6) Let $G=\left\{A \in G L(n, \mathbb{R}) \mid A \cdot A^{t}=c I, c \in \mathbb{R}\right\}$, where I denotes the identity matrix. Show that G is a closed Lie subgroup of $G L(n, \mathbb{R})$. Compute the Lie algebra of G.
(7) Let (u, v, x, y) be the standard coordinates on \mathbb{R}^{4}. Show that there are functions $f_{1}(u, v, x, y)$ and $f_{2}(u, v, x, y)$ defined on a neighborhood of $(0,0,0,0)$ such that $d f_{1} \wedge d f_{2}$ never vanishes, satisfying the following system of partial differential equations:

$$
\begin{aligned}
& (1-u v) \frac{\partial f_{j}}{\partial u}-y \frac{\partial f_{j}}{\partial x}+v y \frac{\partial f_{j}}{\partial y}=0 \\
& (1-u v) \frac{\partial f_{j}}{\partial v}+u x \frac{\partial f_{j}}{\partial x}-x \frac{\partial f_{j}}{\partial y}=0
\end{aligned}
$$

$j=1,2$.
(8) Let X be a complete vector field on the manifold M and let $\nu_{t}: M \rightarrow M, t \in \mathbb{R}$, be its flow.
(a) Show that the family of maps $d \nu_{t}: T M \rightarrow T M, t \in \mathbb{R}$, is the flow of a complete vector field, \bar{X}, on the manifold $T M$.
(b) Let $X=\sum_{i=1}^{n} X^{i}(x) \frac{\partial}{\partial x^{i}}$, where $x=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ are local coordinates on M. Suppose that

$$
\bar{X}=\sum_{i=1}^{n} A^{i}(x, \dot{x}) \frac{\partial}{\partial x^{i}}+\sum_{i=1}^{n} B^{i}(x, \dot{x}) \frac{\partial}{\partial \dot{x}^{i}}
$$

where $(x, \dot{x})=\left(x^{1}, \ldots, x^{n}, \dot{x}^{1}, \ldots, \dot{x}^{n}\right)$ denote the induced coordinates on $T M$. Find expressions for A and B.

