2009 REAL ANALYSIS PRELIM

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Notation:

- All functions in this exam are real-valued.
- Lebesgue measure on the real line \mathbb{R} is denoted by λ. Integrals with respect to λ are written as $\int f(x) d x$.
- If f is a function on a set X, we set $\|f\|_{\text {sup }}=\sup _{x \in X}|f(x)|$.
- If X is a compact Hausdorff space, $C(X)$ is the space of continuous functions on X, equipped with the norm $\|\cdot\|_{\text {sup }}$.

1. Suppose that A is a Borel subset of $[0,1] \times[0,1]$, and let

$$
\begin{gathered}
A_{x}=\{y \in[0,1]:(x, y) \in A\}, \quad A^{y}=\{x \in[0,1]:(x, y) \in A\}, \\
B=\left\{x \in[0,1]: \lambda\left(A_{x}\right)=1 / 3\right\} .
\end{gathered}
$$

Suppose that $\lambda(B)=1 / 5$. Prove that there exists $y \in[0,1]$ such that $\lambda\left(A^{y}\right) \leq 13 / 15$.
2. In this problem, $L^{p}=L^{p}(X, \mu)$ where (X, μ) is a measure space. Suppose $1<p<2$ and $(1 / p)+(1 / q)=1$.
a. Show that $L^{p} \cap L^{q}$ is complete (and hence is a Banach space) with respect to the norm $\|f\|_{p, q}=\|f\|_{p}+\|f\|_{q}$.
b. Show that if $f \in L^{p} \cap L^{q}$, then $f \in L^{2}$ and $\|f\|_{2} \leq \sqrt{\|f\|_{p}\|f\|_{q}}$.
c. Show that $L^{p} \cap L^{q}$ is dense in L^{2} with respect to the L^{2} norm.
d. Since $\sqrt{a b} \leq \frac{1}{2}(a+b)$ for all $a, b \geq 0$, part (b) implies that $\|f\|_{2} \leq \frac{1}{2}\|f\|_{p, q}$. Show that if there is a constant $c>0$ such that $\|f\|_{2} \geq c\|f\|_{p, q}$ for all $f \in L^{p} \cap L^{q}$, then $L^{p} \cap L^{q}=L^{2}$. Give an example of a space (X, μ) where this is the case.
3. The Fourier cosine transform of a function $f \in L^{1}(\mathbb{R}, \lambda)$ is the function \widehat{f} on \mathbb{R} defined by

$$
\widehat{f}(\omega)=\int_{-\infty}^{\infty} \cos (\omega t) f(t) d t
$$

Prove the "Riemann-Lebesgue lemma": if $f \in L^{1}(\mathbb{R}, \lambda)$ then \widehat{f} is continuous and vanishes at infinity. You can assume without proof that the functions of class C^{1} that vanish outside a bounded interval are dense in $L^{1}(\mathbb{R}, \lambda)$.
4. Let K be a continuous function on $[0,1] \times[0,1]$. For $f \in L^{2}([0,1], \lambda)$ and $x \in[0,1]$, define $T f(x)=\int_{0}^{1} K(x, y) f(y) d y$.
a. Show that $\|T f\|_{\text {sup }} \leq\|K\|_{\text {sup }}\|f\|_{2}$ for all $x \in[0,1]$, and that $T f$ is continuous.
b. Show that if $\left\{f_{n}\right\}$ is a bounded sequence in $L^{2}([0,1], \lambda)$, the sequence $\left\{T f_{n}\right\}$ contains a uniformly convergent subsequence.
c. Assume that T is one-to-one. Show that T does not map $L^{2}([0,1], \lambda)$ onto $C([0,1])$.
5. A sequence $\left\{f_{n}\right\}$ in $C([0,1])$ is said to converge weakly to f in $C([0,1])$ if $\phi\left(f_{n}\right) \rightarrow \phi(f)$ for every bounded linear functional ϕ on $C([0,1])$.
a. Show that $f_{n} \rightarrow f$ weakly in $C([0,1])$ if and only if $f_{n} \rightarrow f$ pointwise and there is a constant C such that $\left\|f_{n}\right\|_{\text {sup }} \leq C$ for all $n \geq 1$.
b. Show that if $f_{n} \rightarrow f$ weakly in $C([0,1])$, then $f_{n} \rightarrow f$ in the L^{p} norm with respect to Lebesgue measure for all $p \in[1, \infty)$.
6. Let $\left\{q_{n}\right\}_{1}^{\infty}$ be the set of rational numbers in $[0,1]$, ordered in some way. Prove that the series

$$
\sum_{n=1}^{\infty}(-1)^{n} n^{-3 / 2}\left|x-q_{n}\right|^{-q_{n}+(1 / 2)}
$$

converges to a finite limit for λ-almost all $x \in[0,1]$.
7. Let \mathcal{K} be the family of all nonempty compact subsets of \mathbb{R}. For $A, B \in \mathcal{K}$, define

$$
d(A, B)=\sup _{x \in A} \inf _{y \in B}|x-y|+\sup _{y \in B} \inf _{x \in A}|x-y| .
$$

a. Prove that (\mathcal{K}, d) is a metric space.
b. Prove that (\mathcal{K}, d) is separable.
8. Let X be a compact Hausdorff space. A function $f: X \rightarrow \mathbb{R}$ is called upper semicontinuous if for every $x \in X$ and every $\epsilon>0$ there is a neighborhood U of x such that $f(y)<f(x)+\epsilon$ for all $y \in U$.
a. Show that f is upper semi-continuous if and only if $\{x: f(x)<a\}$ is open in X for every $a \in \mathbb{R}$.
b. Show that if f is upper semi-continuous, there exists $K \in \mathbb{R}$ such that $f(x)<K$ for all $x \in X$.
c. Show that if f is upper semi-continuous, then

$$
f(x)=\inf \{g(x): g \in C(X) \text { and } g(y)>f(y) \text { for all } y \in X\} .
$$

