2009 REAL ANALYSIS PRELIM

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Notation:

- All functions in this exam are real-valued.
- Lebesgue measure on the real line \mathbb{R} is denoted by λ . Integrals with respect to λ are written as $\int f(x) dx$.
- If f is a function on a set X, we set $||f||_{\sup} = \sup_{x \in X} |f(x)|$.
- If X is a compact Hausdorff space, C(X) is the space of continuous functions on X, equipped with the norm $\|\cdot\|_{sup}$.
- 1. Suppose that A is a Borel subset of $[0,1] \times [0,1]$, and let

$$A_x = \{ y \in [0,1] : (x,y) \in A \}, \quad A^y = \{ x \in [0,1] : (x,y) \in A \}, \\ B = \{ x \in [0,1] : \lambda(A_x) = 1/3 \}.$$

Suppose that $\lambda(B) = 1/5$. Prove that there exists $y \in [0, 1]$ such that $\lambda(A^y) \le 13/15$.

- 2. In this problem, $L^p = L^p(X, \mu)$ where (X, μ) is a measure space. Suppose 1and (1/p) + (1/q) = 1.
 - a. Show that $L^p \cap L^q$ is complete (and hence is a Banach space) with respect to the norm $||f||_{p,q} = ||f||_p + ||f||_q$. b. Show that if $f \in L^p \cap L^q$, then $f \in L^2$ and $||f||_2 \le \sqrt{||f||_p ||f||_q}$.

 - c. Show that $L^p \cap L^q$ is dense in L^2 with respect to the L^2 norm.
 - d. Since $\sqrt{ab} \leq \frac{1}{2}(a+b)$ for all $a, b \geq 0$, part (b) implies that $||f||_2 \leq \frac{1}{2} ||f||_{p,q}$. Show that if there is a constant c > 0 such that $||f||_2 \ge c||f||_{p,q}$ for all $f \in L^p \cap L^q$, then $L^p \cap L^q = L^2$. Give an example of a space (X, μ) where this is the case.
- 3. The Fourier cosine transform of a function $f \in L^1(\mathbb{R}, \lambda)$ is the function \widehat{f} on \mathbb{R} defined by

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} \cos(\omega t) f(t) dt.$$

Prove the "Riemann-Lebesgue lemma": if $f \in L^1(\mathbb{R},\lambda)$ then \widehat{f} is continuous and vanishes at infinity. You can assume without proof that the functions of class C^1 that vanish outside a bounded interval are dense in $L^1(\mathbb{R},\lambda)$.

- 4. Let K be a continuous function on $[0,1] \times [0,1]$. For $f \in L^2([0,1],\lambda)$ and $x \in [0,1]$, define $Tf(x) = \int_0^1 K(x,y)f(y) \, dy$.
 - a. Show that $||Tf||_{\sup} \leq ||K||_{\sup} ||f||_2$ for all $x \in [0, 1]$, and that Tf is continuous.
 - b. Show that if $\{f_n\}$ is a bounded sequence in $L^2([0, 1], \lambda)$, the sequence $\{Tf_n\}$ contains a uniformly convergent subsequence.
 - c. Assume that T is one-to-one. Show that T does not map $L^2([0,1],\lambda)$ onto C([0,1]).
- 5. A sequence $\{f_n\}$ in C([0,1]) is said to converge weakly to f in C([0,1]) if $\phi(f_n) \to \phi(f)$ for every bounded linear functional ϕ on C([0,1]).
 - a. Show that $f_n \to f$ weakly in C([0,1]) if and only if $f_n \to f$ pointwise and there is a constant C such that $||f_n||_{\sup} \leq C$ for all $n \geq 1$.
 - b. Show that if $f_n \to f$ weakly in C([0,1]), then $f_n \to f$ in the L^p norm with respect to Lebesgue measure for all $p \in [1, \infty)$.
- 6. Let $\{q_n\}_1^{\infty}$ be the set of rational numbers in [0, 1], ordered in some way. Prove that the series

$$\sum_{n=1}^{\infty} (-1)^n n^{-3/2} |x - q_n|^{-q_n + (1/2)}$$

converges to a finite limit for λ -almost all $x \in [0, 1]$.

7. Let \mathcal{K} be the family of all nonempty compact subsets of \mathbb{R} . For $A, B \in \mathcal{K}$, define

$$d(A, B) = \sup_{x \in A} \inf_{y \in B} |x - y| + \sup_{y \in B} \inf_{x \in A} |x - y|.$$

a. Prove that (\mathcal{K}, d) is a metric space.

b. Prove that (\mathcal{K}, d) is separable.

- 8. Let X be a compact Hausdorff space. A function $f : X \to \mathbb{R}$ is called *upper semi*continuous if for every $x \in X$ and every $\epsilon > 0$ there is a neighborhood U of x such that $f(y) < f(x) + \epsilon$ for all $y \in U$.
 - a. Show that f is upper semi-continuous if and only if $\{x : f(x) < a\}$ is open in X for every $a \in \mathbb{R}$.
 - b. Show that if f is upper semi-continuous, there exists $K \in \mathbb{R}$ such that f(x) < K for all $x \in X$.
 - c. Show that if f is upper semi-continuous, then

$$f(x) = \inf \{ g(x) : g \in C(X) \text{ and } g(y) > f(y) \text{ for all } y \in X \}.$$