
REAL ANALYSIS PRELIM 2010

Do as many of the eight problems as you can. Four completely correct solutions
will be a pass; a few complete solutions will count more than many partial solutions.
Always carefully justify your answers. If you skip a step or omit some details in a
proof, point out the gap and, if possible, indicate what would be required to fill it in.

A few definitions / notations we use below.

• A probability measure is a positive measure such that the total mass is one.
• N = {0, 1, 2, 3, . . .}.
• Sequences will be denoted by the notation 〈an〉. Be careful: note that 〈x, y〉

refers to an inner product.
• C[0, 1] - the set of real-valued continuous functions on the interval [0, 1].

(1) Prove that for all t > 0, we have∫ ∞
0

e−x − e−xt

x
dx = ln t.

Justify all integral manipulations.

(2) Let (Ω,F , µ) be a measure space, with µ being a probability measure.
Suppose ϕ is a continuous real-valued function on R such that

ϕ

(∫
Ω

f(x)dµ(x)

)
≤
∫

Ω

ϕ(f(x))dµ(x)

for every real bounded measurable f .
Suppose that there is a measurable subset A such that µ(A) = 1/2.

Prove that ϕ is then convex.

Note that this is a partial converse to Jensen’s inequality for convex
functions.

(3) Let (Ω,F , µ) be a measure space. Let 〈[fn]〉 be a sequence in Lp(µ), 1 <
p <∞, where [h] refers to the function class of h. Suppose fn converges to
f almost everywhere and

〈∫
fngdµ

〉
is bounded for all [g] ∈ Lq(µ), where

1/p+ 1/q = 1. Prove that [f ] ∈ Lp(µ).

(4) Suppose 1 < p < ∞. Let f ∈ Lp(0,∞), relative to the Lebesgue measure,
and set

F (x) =
1

x

∫ x

0

f(t)dt, 0 < x <∞.

Prove Hardy’s inequality:

‖F‖p ≤
p

p− 1
‖f‖p .
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Hint: First explain why it suffices to consider f ≥ 0. Then, start with
the case when f is continuous, nonnegative, and compactly supported in
the open interval (0,∞), and apply integration by parts to the integral∫∞

0
F p(x)dx.

(5) Suppose µ is a finite signed Borel measure on [0, 1] such that∫ 1

0

e−nxdµ(x) = 0, for all n ∈ N.

Prove that µ = 0.

(6) Let (Ω,F) be a measurable space on which two probability measures µ and
ν exist. Define the Total Variation metric between the two measures as

‖µ− ν‖TV = sup
A∈F
|µ(A)− ν(A)| .

Suppose λ is any positive measure on F such that both µ and ν are domi-
nated by λ. Prove that

‖µ− ν‖TV =
1

2

∫
Ω

∣∣∣∣dµdλ − dν

dλ

∣∣∣∣ dλ.
Here dµ/dλ and dν/dλ refer to Radon-Nikodým derivatives.

(7) Suppose X is a Hausdorff space, (Y,d) is a metric space, and 〈fn〉 is an
equicontinuous sequence of functions from X to Y. That is, for all p ∈ X
and for all ε > 0, there exists an open neighborhood U of p such that

d (fn(x), fn(p)) < ε for all n, whenever x ∈ U.
Prove that

C = {x ∈ X : 〈fn(x)〉 is a Cauchy sequence in Y}
is closed in X.

(8) Let C1[0, 1] be the set {f ∈ C[0, 1] : there exists f ′ ∈ C[0, 1]}, where we
take the right derivative of f at zero and the left derivative at one in
defining f ′. Equip C1[0, 1] with the inner product

〈f, g〉1 =

∫ 1

0

f(t)g(t)dt+

∫ 1

0

f ′(t)g′(t)dt.

This inner product, in a natural way, induces a norm and a metric on
C1[0, 1].

Prove that any Cauchy sequence from C1[0, 1] in the above metric con-
verges (L2-sense) to a continuous function. In other words, the completion
of C1[0, 1] in this metric can be taken to be a subset of C[0, 1].


