REAL ANALYSIS PRELIM 2010

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

A few definitions / notations we use below.

- A probability measure is a positive measure such that the total mass is one.
- $\mathbb{N}=\{0,1,2,3, \ldots\}$.
- Sequences will be denoted by the notation $\left\langle a_{n}\right\rangle$. Be careful: note that $\langle x, y\rangle$ refers to an inner product.
- $C[0,1]$ - the set of real-valued continuous functions on the interval $[0,1]$.
(1) Prove that for all $t>0$, we have

$$
\int_{0}^{\infty} \frac{e^{-x}-e^{-x t}}{x} d x=\ln t
$$

Justify all integral manipulations.
(2) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, with μ being a probability measure. Suppose φ is a continuous real-valued function on \mathbb{R} such that

$$
\varphi\left(\int_{\Omega} f(x) d \mu(x)\right) \leq \int_{\Omega} \varphi(f(x)) d \mu(x)
$$

for every real bounded measurable f.
Suppose that there is a measurable subset A such that $\mu(A)=1 / 2$. Prove that φ is then convex.

Note that this is a partial converse to Jensen's inequality for convex functions.
(3) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let $\left\langle\left[f_{n}\right]\right\rangle$ be a sequence in $\mathbf{L}^{p}(\mu), 1<$ $p<\infty$, where [h] refers to the function class of h. Suppose f_{n} converges to f almost everywhere and $\left\langle\int f_{n} g d \mu\right\rangle$ is bounded for all $[g] \in \mathbf{L}^{q}(\mu)$, where $1 / p+1 / q=1$. Prove that $[f] \in \mathbf{L}^{p}(\mu)$.
(4) Suppose $1<p<\infty$. Let $f \in \mathbf{L}^{p}(0, \infty)$, relative to the Lebesgue measure, and set

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t, \quad 0<x<\infty
$$

Prove Hardy's inequality:

$$
\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}
$$

[^0]Hint: First explain why it suffices to consider $f \geq 0$. Then, start with the case when f is continuous, nonnegative, and compactly supported in the open interval $(0, \infty)$, and apply integration by parts to the integral $\int_{0}^{\infty} F^{p}(x) d x$.
(5) Suppose μ is a finite signed Borel measure on $[0,1]$ such that

$$
\int_{0}^{1} e^{-n x} d \mu(x)=0, \quad \text { for all } n \in \mathbb{N} \text {. }
$$

Prove that $\mu=0$.
(6) Let (Ω, \mathcal{F}) be a measurable space on which two probability measures μ and ν exist. Define the Total Variation metric between the two measures as

$$
\|\mu-\nu\|_{T V}=\sup _{A \in \mathcal{F}}|\mu(A)-\nu(A)|
$$

Suppose λ is any positive measure on \mathcal{F} such that both μ and ν are dominated by λ. Prove that

$$
\|\mu-\nu\|_{T V}=\frac{1}{2} \int_{\Omega}\left|\frac{d \mu}{d \lambda}-\frac{d \nu}{d \lambda}\right| d \lambda
$$

Here $d \mu / d \lambda$ and $d \nu / d \lambda$ refer to Radon-Nikodým derivatives.
(7) Suppose \mathbf{X} is a Hausdorff space, (\mathbf{Y}, \mathbf{d}) is a metric space, and $\left\langle f_{n}\right\rangle$ is an equicontinuous sequence of functions from \mathbf{X} to \mathbf{Y}. That is, for all $p \in \mathbf{X}$ and for all $\epsilon>0$, there exists an open neighborhood U of p such that

$$
\mathbf{d}\left(f_{n}(x), f_{n}(p)\right)<\epsilon \quad \text { for all } n, \text { whenever } \quad x \in U
$$

Prove that

$$
C=\left\{x \in \mathbf{X}:\left\langle f_{n}(x)\right\rangle \text { is a Cauchy sequence in } \mathbf{Y}\right\}
$$

is closed in \mathbf{X}.
(8) Let $C^{1}[0,1]$ be the set $\left\{f \in C[0,1]\right.$: there exists $\left.f^{\prime} \in C[0,1]\right\}$, where we take the right derivative of f at zero and the left derivative at one in defining f^{\prime}. Equip $C^{1}[0,1]$ with the inner product

$$
\langle f, g\rangle_{1}=\int_{0}^{1} f(t) g(t) d t+\int_{0}^{1} f^{\prime}(t) g^{\prime}(t) d t
$$

This inner product, in a natural way, induces a norm and a metric on $C^{1}[0,1]$.

Prove that any Cauchy sequence from $C^{1}[0,1]$ in the above metric converges $\left(\mathbf{L}^{2}\right.$-sense) to a continuous function. In other words, the completion of $C^{1}[0,1]$ in this metric can be taken to be a subset of $C[0,1]$.

[^0]: Date: September 10, 2010.

