REAL ANALYSIS PRELIM 2011

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Notation: The set of real numbers is denoted by \mathbb{R} . The Lebesgue measure of a set A in \mathbb{R} or \mathbb{R}^n is denoted by $\lambda(A)$, but the Lebesgue integral of a function f is denoted simply by $\int f(x) dx$ (where other letters may be substituted for x). If I is an interval in \mathbb{R} , $L^p(I)$ denotes the L^p space with respect to Lebesgue measure.

- 1. Suppose A is a Lebesgue measurable subset of \mathbb{R} with $\lambda(A) > 0$. Show that for all b with $0 < b < \lambda(A)$ there is a compact set $B \subset A$ with $\lambda(B) = b$.
- 2. Use the fact that $\int_0^\infty e^{-st} t^{n+(1/2)} dt = \frac{1}{2} \cdot \frac{3}{2} \cdots (n+\frac{1}{2}) \sqrt{\pi} s^{-n-(3/2)}$ (which you can assume without proof) to show that

$$\int_0^\infty e^{-st} \sin \sqrt{t} \, dt = \frac{\sqrt{\pi}}{2s^{3/2}} e^{-1/4s} \qquad (s > 0).$$

Make sure you establish the validity of your calculations.

3. Let $f:[0,1] \to \mathbb{R}$. Suppose that the one-sided derivatives

$$D_{-}f(x) = \lim_{h < 0, h \to 0} \frac{f(x+h) - f(x)}{h} \qquad (0 < x \le 1),$$
$$D_{+}f(x) = \lim_{h > 0, h \to 0} \frac{f(x+h) - f(x)}{h} \qquad (0 \le x < 1)$$

exist for all x in the indicated ranges and are bounded in absolute value by a constant $K < \infty$. Prove that the (two-sided) derivative f'(x) exists for almost every $x \in (0, 1)$.

4. Suppose that f is a nonnegative Lebesgue measurable function on (0,1] such that $\int_0^1 t^3 f(t)^4 dt < \infty$. Show that

$$\frac{\int_x^1 f(t) \, dt}{|\log x|^{3/4}} \to 0 \text{ as } x \to 0 \quad (x > 0).$$

(Hint: First show that $\int_x^1 f(t) dt \leq C |\log x|^{3/4}$, then refine the argument by writing $\int_x^1 = \int_x^{\delta} + \int_{\delta}^1$ for a suitably chosen δ .)

5. Suppose $f \in L^1([0,1])$. Show that if $\int_0^1 f(x)(\sin x)^n dx = 0$ for all n = 1, 2, 3, ..., then f = 0 a.e.

6. Let Λ be the set of all functions $f : \mathbb{R} \to \mathbb{R}$. Let \mathcal{G} be the family of all sets $A \subset \Lambda$ of the form

$$A = \left\{ f \in \Lambda : (f(x_1), f(x_2), \dots, f(x_n)) \in B \right\}$$

for some finite set $\{x_1, \ldots, x_n\} \subset \mathbb{R}$ $(n = 1, 2, 3, \ldots)$ and some open set $B \subset \mathbb{R}^n$ (in the usual Euclidean topology on \mathbb{R}^n). Let \mathfrak{T} be the topology generated by \mathcal{G} , that is, the weakest topology on Λ such that $\mathcal{G} \subset \mathfrak{T}$.

- a. Show that a sequence $\{f_n\}$ in Λ converges to f with respect to \mathcal{T} if and only if $f_n \to f$ pointwise.
- b. Show that the continuous functions are dense in Λ with respect to \mathcal{T} .
- c. Show that \mathcal{T} is not metrizable that is, for any metric ρ on Λ , the weakest topology \mathcal{T}_{ρ} which contains all open balls $\{y \in \Lambda : \rho(x, y) < a\}, x \in \Lambda, a > 0$, is different from \mathcal{T} .
- 7. Let \mathfrak{X} and \mathfrak{Y} be Banach spaces and $T : \mathfrak{X} \to \mathfrak{Y}$ a one-to-one bounded linear map whose range $T(\mathfrak{X})$ is closed in \mathfrak{Y} . Show that for each bounded linear functional ϕ on \mathfrak{X} there is a bounded linear functional ψ on \mathfrak{Y} such that $\phi = \psi \circ T$, and there is a constant C (independent of ϕ) such that ψ can be chosen to satisfy $\|\psi\| \leq C \|\phi\|$. (Here $\|\phi\| = \sup_{\|x\|=1} |\phi(x)|$, and similarly for $\|\psi\|$.)
- 8. Let $B(x,r) \subset \mathbb{R}^2$ denote the open disc with center x and radius r and let S(x,r) be the boundary of B(x,r). Let D = B((0,0),1) be the unit open disc, and let \mathcal{H} be the family of all bounded Borel measurable functions $f: D \to \mathbb{R}$. Let

$$\mathcal{A} = \left\{ f \in \mathcal{H} : f(x) = \frac{1}{2\pi r} \int_{S(x,r)} f(y) \, d\sigma(y) \text{ for all circles } S(x,r) \subset D \right\},$$

where $d\sigma(y)$ denotes the arc length measure on S(x, r), and

$$\mathcal{B} = \left\{ f \in \mathcal{H} : f(x) = \frac{1}{\pi r^2} \int_{B(x,r)} f(y) \, dy \text{ for all discs } B(x,r) \subset D \right\},\$$

where dy denotes 2-dimensional Lebesgue measure. Prove that $\mathcal{A} = \mathcal{B}$. (It may be useful to show that all functions in \mathcal{B} are continuous.)