REAL ANALYSIS PRELIM 2011

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Notation: The set of real numbers is denoted by \mathbb{R}. The Lebesgue measure of a set A in \mathbb{R} or \mathbb{R}^{n} is denoted by $\lambda(A)$, but the Lebesgue integral of a function f is denoted simply by $\int f(x) d x$ (where other letters may be substituted for x). If I is an interval in $\mathbb{R}, L^{p}(I)$ denotes the L^{p} space with respect to Lebesgue measure.

1. Suppose A is a Lebesgue measurable subset of \mathbb{R} with $\lambda(A)>0$. Show that for all b with $0<b<\lambda(A)$ there is a compact set $B \subset A$ with $\lambda(B)=b$.
2. Use the fact that $\int_{0}^{\infty} e^{-s t} t^{n+(1 / 2)} d t=\frac{1}{2} \cdot \frac{3}{2} \cdots\left(n+\frac{1}{2}\right) \sqrt{\pi} s^{-n-(3 / 2)}$ (which you can assume without proof) to show that

$$
\int_{0}^{\infty} e^{-s t} \sin \sqrt{t} d t=\frac{\sqrt{\pi}}{2 s^{3 / 2}} e^{-1 / 4 s} \quad(s>0)
$$

Make sure you establish the validity of your calculations.
3. Let $f:[0,1] \rightarrow \mathbb{R}$. Suppose that the one-sided derivatives

$$
\begin{array}{ll}
D_{-} f(x)=\lim _{h<0, h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & (0<x \leq 1), \\
D_{+} f(x)=\lim _{h>0, h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & (0 \leq x<1)
\end{array}
$$

exist for all x in the indicated ranges and are bounded in absolute value by a constant $K<\infty$. Prove that the (two-sided) derivative $f^{\prime}(x)$ exists for almost every $x \in(0,1)$.
4. Suppose that f is a nonnegative Lebesgue measurable function on $(0,1]$ such that $\int_{0}^{1} t^{3} f(t)^{4} d t<\infty$. Show that

$$
\frac{\int_{x}^{1} f(t) d t}{|\log x|^{3 / 4}} \rightarrow 0 \text { as } x \rightarrow 0 \quad(x>0)
$$

(Hint: First show that $\int_{x}^{1} f(t) d t \leq C|\log x|^{3 / 4}$, then refine the argument by writing $\int_{x}^{1}=\int_{x}^{\delta}+\int_{\delta}^{1}$ for a suitably chosen δ.)
5. Suppose $f \in L^{1}([0,1])$. Show that if $\int_{0}^{1} f(x)(\sin x)^{n} d x=0$ for all $n=1,2,3, \ldots$, then $f=0$ a.e.
6. Let Λ be the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Let \mathcal{G} be the family of all sets $A \subset \Lambda$ of the form

$$
A=\left\{f \in \Lambda:\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right) \in B\right\}
$$

for some finite set $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}(n=1,2,3, \ldots)$ and some open set $B \subset \mathbb{R}^{n}$ (in the usual Euclidean topology on \mathbb{R}^{n}). Let \mathcal{T} be the topology generated by \mathcal{G}, that is, the weakest topology on Λ such that $\mathcal{G} \subset \mathcal{T}$.
a. Show that a sequence $\left\{f_{n}\right\}$ in Λ converges to f with respect to \mathcal{T} if and only if $f_{n} \rightarrow f$ pointwise.
b. Show that the continuous functions are dense in Λ with respect to \mathcal{T}.
c. Show that \mathcal{T} is not metrizable - that is, for any metric ρ on Λ, the weakest topology \mathcal{T}_{ρ} which contains all open balls $\{y \in \Lambda: \rho(x, y)<a\}, x \in \Lambda, a>0$, is different from \mathcal{T}.
7. Let X and y be Banach spaces and $T: X \rightarrow y$ a one-to-one bounded linear map whose range $T(X)$ is closed in \mathcal{y}. Show that for each bounded linear functional ϕ on X there is a bounded linear functional ψ on y such that $\phi=\psi \circ T$, and there is a constant C (independent of ϕ) such that ψ can be chosen to satisfy $\|\psi\| \leq C\|\phi\|$. (Here $\|\phi\|=\sup _{\|x\|=1}|\phi(x)|$, and similarly for $\|\psi\|$.)
8. Let $B(x, r) \subset \mathbb{R}^{2}$ denote the open disc with center x and radius r and let $S(x, r)$ be the boundary of $B(x, r)$. Let $D=B((0,0), 1)$ be the unit open disc, and let \mathcal{H} be the family of all bounded Borel measurable functions $f: D \rightarrow \mathbb{R}$. Let

$$
\mathcal{A}=\left\{f \in \mathcal{H}: f(x)=\frac{1}{2 \pi r} \int_{S(x, r)} f(y) d \sigma(y) \text { for all circles } S(x, r) \subset D\right\}
$$

where $d \sigma(y)$ denotes the arc length measure on $S(x, r)$, and

$$
\mathcal{B}=\left\{f \in \mathcal{H}: f(x)=\frac{1}{\pi r^{2}} \int_{B(x, r)} f(y) d y \text { for all discs } B(x, r) \subset D\right\}
$$

where $d y$ denotes 2-dimensional Lebesgue measure. Prove that $\mathcal{A}=\mathcal{B}$. (It may be useful to show that all functions in \mathcal{B} are continuous.)

