Real Analysis Prelim - 2015

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Notation:

- \mathbb{R} is the real line; $[a, b] \subset \mathbb{R}$ is the closed interval from a to b.
- m denotes Lebesgue measure. All integrals on \mathbb{R} or on subsets of \mathbb{R} assume that Lebesgue measure is used.
- $L^{p}([a, b])$ is the space of p-integrable functions on $[a, b]$ with the usual norm.

1. Suppose that $1<p<\infty$, and $\left\{f_{j}\right\}_{j=1}^{\infty}$ is a sequence in $L^{1}([0,1])$ such that

$$
\sup _{j} \int_{[0,1]}\left|f_{j}\right|^{p} d m<\infty .
$$

(a.) If $f \in L^{1}([0,1])$ is such that $\lim _{j \rightarrow \infty}\left\|f_{j}-f\right\|_{L^{1}}=0$, show that

$$
\int_{[0,1]}|f|^{p} d m<\infty
$$

(b.) Is it necessarily true that $\lim _{j \rightarrow \infty}\left\|f_{j}-f\right\|_{L^{p}}=0$? Either prove that it's true, or give a counterexample.
2. For $1 \leq p \leq \infty$, and $f \in L^{p}([0,1])$, define

$$
(T f)(x)=\int_{0}^{x} f(s) d s, \quad 0 \leq x \leq 1
$$

(a.) Show that, if $1<p \leq \infty, T$ is a compact linear mapping of $L^{p}([0,1])$ into $C([0,1])$, where $C([0,1])$ is the space of continuous functions on $[0,1]$ with the uniform norm.
(b.) Is this true for $p=1$? Either prove that it is true, or give a counterexample.
3. Suppose that $\left\{f_{j}\right\}_{j=1}^{\infty}$ is a sequence in $L^{2}(\mathbb{R})$ such that f_{j} converges weakly to $f \in L^{2}(\mathbb{R})$.
(a.) Give an example of such a sequence for which $\lim _{j \rightarrow \infty}\left\|f_{j}-f\right\|_{L^{2}} \neq 0$.
(b.) Show that if $\lim _{j \rightarrow \infty}\left\|f_{j}\right\|_{L^{2}}=\|f\|_{L^{2}}$ then $\lim _{j \rightarrow \infty}\left\|f_{j}-f\right\|_{L^{2}}=0$.
4. Suppose that f is a real-valued Borel measurable function on the interval $[0,1]$. Show that there exists a sequence of polynomial functions $\left\{P_{k}(x)\right\}_{k=1}^{\infty}$ such that

$$
\lim _{k \rightarrow \infty} P_{k}(x)=f(x) \text { pointwise almost everywhere on }[0,1]
$$

5. Let $\ell^{2}(\mathbb{N})$ denote the Hilbert space of square summable, complex valued sequences $\mathbf{a}=\left\{a_{j}\right\}_{j=1}^{\infty}$, with norm

$$
\|\mathbf{a}\|_{\ell^{2}(\mathbb{N})}=\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{2}\right)^{\frac{1}{2}}
$$

If K is a compact subset of $\ell^{2}(\mathbb{N})$, show that there exists a sequence of real numbers $\left\{m_{j}\right\}_{j=1}^{\infty}$ satisfying the following conditions

$$
0<m_{1} \leq m_{2} \leq m_{3} \leq \cdots, \quad \lim _{j \rightarrow \infty} m_{j}=\infty
$$

such that for every $\mathbf{a} \in K$ the following holds

$$
\sum_{j=1}^{\infty} m_{j}\left|a_{j}\right|^{2} \leq 1
$$

6. Suppose that $E \subset \mathbb{R}$ is a measurable subset of strictly positive measure. Show that there exists $\delta_{0}>0$ such that, for all $0 \leq \delta<\delta_{0}$,

$$
m(E \cap(E+\delta))>0, \quad \text { where } \quad E+\delta=\{x+\delta: x \in E\} .
$$

7. Recall that weak- L^{p} is the space of measurable functions f such that $[f]_{p}<\infty$, where

$$
[f]_{p}=\left(\sup _{\alpha>0} \alpha^{p} m(\{x:|f(x)|>\alpha\})\right)^{\frac{1}{p}}
$$

(a.) Show that if f belongs to both weak- L^{1} and weak- L^{2}, then $f \in L^{p}$ for $1<p<2$.
(b.) Show that for each $r>0$,

$$
\int|f|^{p} \leq \frac{p}{p-1}[f]_{1} r^{p-1}+\frac{p}{2-p}[f]_{2}^{2} r^{p-2}
$$

What value of r makes the right side minimal?
8. Define functions $u(x), v(x) \in L_{\mathrm{loc}}^{1}(\mathbb{R})$ as follows:

$$
u(x)=\left\{\begin{array}{cl}
\ln (x), & x>0 \\
0, & x \leq 0
\end{array} \quad v(x)=\left\{\begin{array}{cc}
1, & x>0 \\
0, & x \leq 0
\end{array}\right.\right.
$$

and corresponding distributions $u, v \in \mathcal{D}^{\prime}(\mathbb{R})$ by

$$
\langle u, \phi\rangle=\int_{\mathbb{R}} u(x) \phi(x) d x, \quad\langle v, \phi\rangle=\int_{\mathbb{R}} v(x) \phi(x) d x, \quad \phi \in C_{c}^{\infty}(\mathbb{R}) .
$$

(a.) Show that $x \partial u=v$ (in the sense of distributions in $\mathcal{D}^{\prime}(\mathbb{R})$).
(b.) For $f \in \mathcal{D}^{\prime}(\mathbb{R})$ and $r>0$, let $f_{r} \in \mathcal{D}^{\prime}(\mathbb{R})$ denote the dilation of f by r. Find the distribution $(\partial u)_{r}-r^{-1} \partial u$.
Note: For $f \in L_{\text {loc }}^{1}(\mathbb{R})$ dilation is defined by $f_{r}(x)=f(r x)$. You may use that $\partial f_{r}=r(\partial f)_{r}$ holds for $f \in \mathcal{D}^{\prime}(\mathbb{R})$.

