
REAL ANALYSIS PRELIMINARY EXAM

March, 2019

INSTRUCTIONS: Do as many of the eight problems as you can. Four completely
correct solutions will be a pass; a few complete solutions will count more than many
partial solutions. Always carefully justify your answers. If you skip a step or omit some
details in a proof, point out the gap and, if possible, indicate what would be required
to fill it. Please start each solution on a new page and submit your solutions in order.

If any questions or instructions are not clear, ask the proctor.
You may use any standard theorem from your real analysis course, identifying it

either by name or by stating it in full. Be sure to establish that the hypotheses of the
theorem are satisfied before you use it.

The notation R stands for the real numbers. For p ≥ 1, Lp(Rn) denotes the Lp-space
on Rn with respect to Lebesgue measure. Given an integer k ≥ 1, we say a function
defined on an open subset of Rn is Ck if it has continuous derivatives up to and including
the kth order. The notation f ∈ C([0, 1]) means f is a continuous function on [0, 1].

Problem 1. Let g ∈ L2(R), and set f(x) =
∫ x

0
g(t)dt, x ∈ R.

(a) Show by an example that f need not be differentiable at 0.
(b) Must f have any points of differentiability? Explain.
(c) Let ϕ(x) = f(x)2. Show that ϕ is differentiable at 0 and find ϕ′(0).

Problem 2. Let {fn : n ≥ 1} be a sequence of continuously differentiable functions on
[0, 1], and assume that

|f ′n(x)| ≤ 1√
x

for all 0 < x ≤ 1 and all n ≥ 1,

and that ∫ 1

0

fn(x) dx = 0 for all n ≥ 1.

Prove that this sequence has a subsequence that converges uniformly on [0, 1].

Problem 3. Consider R, equipped with the Lebesgue measure. Suppose that f ∈
L∞(R) is such that, for every g ∈ L1(R) and every a ∈ R, we have∫ ∞

−∞
g(x)[f(x + a)− f(x)] dx = 0.

Prove that there exists a constant c such that f(x) = c for almost all x ∈ R

Problem 4. Suppose that H is a separable real Hilbert space with an orthonormal
basis {ek : k ≥ 1} and with inner product denoted by 〈·, ·〉. Let {yk : k ≥ 1} ⊂ H.
Prove that the following two statements are equivalent.
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(a) limk→∞〈x, yk〉 = 0 for every x ∈ H;
(b) supk≥1 ‖yk‖ <∞ and limk→∞〈en, yk〉 = 0 for every n ≥ 1.

Problem 5. Let B be a real Banach space. Denote by ‖ · ‖ the norm on B. Suppose
that B satisfies the best approximation property, that is:

Given a closed subspace M of B and given x ∈ B there exists yx ∈M

such that ‖x− yx‖ = infy∈M ‖y − x‖ = dist (x,M).

Prove that for every bounded linear function f ∈ B∗ there exists z ∈ B such that
f(z) = ‖f‖‖z‖.

Problem 6. Let K be a continuous function on [0, 1] × [0, 1]. For f ∈ L2([0, 1]) and
x ∈ [0, 1], define

Tf(x) =

∫ 1

0

K(x, y)f(y)dy.

(a) Show that Tf is continuous on [0, 1] and ‖Tf‖∞ ≤ ‖K‖∞‖f‖2 for all x ∈ [0, 1].
Here ‖ · ‖∞ denotes the L∞-norm.

(b) Show that if {fn : n ≥ 1} is a bounded sequence in L2([0, 1]), the sequence
{Tfn : n ≥ 1} has a uniformly convergent subsequence.

(c) Assume that T is one-to-one. Show that T does not map L2([0, 1]) onto C([0, 1]).

Problem 7. Suppose f ∈ L1([0, 1]). Show that if
∫ 1

0
f(x)(sinx)ndx = 0 for every

n = 1, 2, 3, . . . , then f = 0 a.e. on [0, 1].

Problem 8. The Fourier cosine transform of a function f ∈ L1(R) is the function on
R defined by

f̂(ω) =

∫ ∞
−∞

cos(ωt)f(t) dt

Prove the “Riemann-Lebesgue lemma”: if f ∈ L1(R) then f̂ is continuous and vanishes
at infinity. You can assume without proof that functions of class C1 that vanish outside
a bounded interval are dense in L1(R).


