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Abstract. Let φ and ψ be endomorphisms of the projective line of degree at least 2,
defined over a field F . From a dynamical perspective, a significant question is to determine
whether φ and ψ are conjugate (or to answer the related question of whether a given rational
function φ has a nontrivial automorphism). We construct efficient algorithms for computing
the set of conjugating maps (resp., the group of automorphisms), with an emphasis on the
case where F is a finite field or a number field. Each of our algorithms takes advantage of
different dynamical structures, so context (e.g., field of definition and degree of the map)
determines the preferred algorithm.

1. Introduction

Let F be a field, and let φ = f/g ∈ F (z) be a rational function, where f, g are relatively
prime polynomials. Unless otherwise specified, we assume throughout that

d = deg(φ) := max{deg(f), deg(g)} ≥ 2.

When viewed as an endomorphism of the projective line P1
F

φ→ P1
F , a dynamical theory of φ

arises from iteration. That is, for x ∈ P1(F ), we may consider its orbit

x 7→ φ(x) 7→ φ2(x) 7→ φ3(x) 7→ · · ·

(Here we write φ1 = φ and φn = φ ◦ φn−1 for each n > 1.)
Two rational functions φ, ψ ∈ F (z) are conjugate if there is some rational function f

of degree 1 (an automorphism of P1) defined over F , an algebraic closure of F , such that
f ◦φ = ψ ◦f . In this case, the two functions exhibit the same geometric dynamical behavior.
Indeed, if f ∈ F (z) conjugates φ to ψ, then f maps the φ-orbit of a point x ∈ P1(F ) to
the ψ-orbit of f(x). We say that φ and ψ are conjugate over a field extension E/F if they
satisfy the relation f ◦ φ = ψ ◦ f for some rational function f ∈ E(z) of degree 1. In this
case, they have the same arithmetic dynamical behavior over E; e.g., f maps φ-orbits of
E-rational points to ψ-orbits of E-rational points, and the field extension of E generated by
the period-n points of φ and ψ must agree for every n ≥ 1.

Conversely, given two functions that seemingly exhibit the same dynamical behavior, one
wants to know if they are conjugate, or if there is some deeper structure that should be
investigated. This natural question sparked the current work, in which we study the following
pair of algorithmic problems:
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(1) For two rational functions φ and ψ, determine the set of rational functions f of
degree 1 (automorphisms of P1) that conjugate φ to ψ, i.e., such that f ◦φ◦f−1 = ψ.

(2) For a given rational function φ, determine the automorphism group of φ; i.e.,
determine the set of rational functions f of degree 1 such that f ◦ φ ◦ f−1 = φ.

These two questions are intimately connected. In §2 we show that the set of automorphisms
can be viewed as the points of a finite group scheme, denoted Autφ. In §3 we show that
the set of maps conjugating φ to ψ is also a scheme, denoted Conjφ,ψ, which is a principal
homogeneous space for Autφ. In particular, conjugacy over F and conjugacy over an algebraic
closure F are equivalent notions whenever φ (and ψ) has trivial automorphism group. More
generally, one can show that the size of the automorphism group of φ (or ψ) bounds the
degree of the field extension generated by the coefficients of any conjugating map [LMT12].

The symmetry locus of rational functions — the space of rational functions with nontrivial
automorphism group — can be thought of as an analogue of the locus of abelian varieties
that have extra automorphisms. Indeed, just as the presence of elliptic curves with extra
automorphisms obstructs the existence of a universal elliptic curve, so does the symmetry
locus obstruct the existence of a fine moduli space of conjugacy classes of rational functions.
The algorithms discussed below may be viewed as a computational tool for detecting if a
given rational function is an obstruction.

Algorithms. We provide algorithms in §4, §5, and §6 that take advantage of dynamical
structure to compute the field-valued points of Autφ and Conjφ,ψ. Each algorithm utilizes
different types of dynamical structure, and consequently each has its own strengths and
weaknesses. In §8, we briefly describe two additional algorithms, which are “naive” in the
sense that they do not take advantage of context-specific knowledge. We describe these two
algorithms mainly for the sake of completeness and for performance comparison.

By way of a disclaimer, we have attempted to stress concept and clarity in our algorithms;
we have not endeavored to explain all of the small tricks we used at the level of implementa-
tion. This is especially true in Algorithm 2, the Chinese Remainder Theorem. We refer the
interested reader to our source code which is included with the arXiv distribution of this
article.

Method of Invariant Sets. This algorithm computes the absolute conjugating set (defined
over an algebraic closure F ) using linear algebra, based on the existence of a pair of subsets
Tφ, Tψ ⊂ P1(F ) such that f(Tφ) = Tψ for all f ∈ Conjφ,ψ(F ). A descent trick allows one to

rapidly determine which elements of Conjφ,ψ(F ) are F -rational. The same method can be
used to compute the absolute and F -rational automorphism groups. See §4.

Chinese Remainder Theorem. When F = Q, we give an arithmetically motivated algo-
rithm to compute Conjφ,ψ(Q) (or Autφ(Q)). First we compute Conjφ,ψ(Fp) for a number of
primes p (by exhaustive search or any of our other methods), and then we glue this infor-
mation together using the Chinese Remainder Theorem (CRT). To show that this algorithm
terminates, we prove that the heights of the elements in Conjφ,ψ(Q) are bounded in terms
of the coefficients of φ and ψ. See §5, where we also work over an arbitrary number field.

Method of Fixed Points. The action of φ on the fixed points of a nontrivial element f ∈
Autφ(F ) is highly restricted, both geometrically and arithmetically. We exploit this restric-
tion to develop another algorithm for computing Autφ(F ). See §6.
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Gröbner Bases. Since Conjφ,ψ and Autφ are zero-dimensional schemes naturally defined by
2d + 1 homogeneous polynomials of degree d + 1 in four variables, one may apply standard
Gröbner basis techniques to compute the points of Conjφ,ψ or Autφ. See §7.1.

Exhaustive Search. When φ and ψ are defined over a finite field Fq, one could, in theory,
determine Conjφ,ψ(Fq) or Autφ(Fq) by exhaustive search. This computation is feasible when
the degrees of φ, ψ and the size of the finite field are reasonably small. See §7.2.

Comparison of algorithms. In §8 we compare the running times of the algorithms for
computing Autφ(Q) for a large number of randomly generated rational functions of various
degrees and various heights, and also for rational functions with nontrivial automorphism
group. See Tables 1, 2, and 3 for precise timings.

The running times for random maps demonstrate that the method of fixed points is prefer-
able to the CRT method for rational functions of degree up to about 12, when the two meth-
ods become comparable. For larger degrees, the CRT method is preferable. As a benchmark,
we compare our new algorithms with the Gröbner basis algorithm. Our experiments show
that this naive method is comparable with the fixed point method when the degree is two or
three, but on average performs an order of magnitude worse already for functions of degree
6 and two orders of magnitude worse for functions of degree 9.

The method of invariant sets is not competitive with the other algorithms on random maps,
as these tend to require computations in number fields of large degree. It compares favorably
and occasionally better for maps with nontrivial automorphisms. We stress, however, that
the main advantage the method of invariant sets has over the other algorithms is that it
computes the F -rational conjugation maps and automorphisms. In particular, this means it
can detect if a function lies is in the symmetry locus.

It is worth noting that modern research on the dynamics of rational functions often focuses
on low degree, with an abundance of open questions even in degrees 2 (see, for example,
[Mil93, Poo98]) and 3 (see [Mil09]). So there is already ample room for generating, testing,
and refining new conjectures on rational functions of degrees between 3 and 10, say, and we
believe the tools presented here will be useful in this regard.

Acknowledgements. This project began at the University of Georgia, during an NSF–
sponsored summer school on Arithmetic Dynamics. We thank the organizer, Robert Rumely,
for the experience, and Rafe Jones for inspiring this work with a comment during one of his
talks. The authors are grateful for the opportunity to complete the project at the Institute
for Computational and Experimental Research in Mathematics. We thank the anonymous
referees for their comments, and give special thanks to Joseph H. Silverman for helpful
comments on our number field algorithm.

2. The automorphism scheme

Let R be a noetherian commutative ring with unity, and let R-Alg and Grp denote the
categories of commutative R-algebras and (abstract) groups, respectively. For any R-algebra
S, we identify PGL2(S) with Aut(P1

S), the group of automorphisms of P1 defined over S.
We make the following definition:
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Definition. Let φ : P1
R → P1

R be a morphism of degree at least 2. Let Autφ denote the
functor from R-Alg→ Grp given by

S 7→ {f ∈ Aut(P1
S) : φ = f ◦ φ ◦ f−1}.

The functor Autφ acts on R-algebra morphisms by base extension of the associated group of
automorphisms.

The remainder of this section will be devoted to showing that the functor Autφ is repre-
sented by a finite group scheme.

Theorem 2.1. Let R be a noetherian commutative ring and let φ : P1
R → P1

R be an en-
domorphism of degree at least 2. Then the functor Autφ is represented by a closed finite
R-subgroup scheme Autφ ⊂ PGL2.

Remark 2.2. The group scheme Autφ need not be flat over SpecR. For example, if φ(z) = z2

is an endomorphism of the projective line over Z2, then there is nontrivial 2-torsion in the
ring of global functions of Autφ. Intuitively, this is because Autφ(Q2) = {z, 1/z}, while

Autφ(F2) ∼= PGL2(F2), which has order 6.

The proof of the theorem will be postponed until §2.2. Our main contribution lies in
showing that Autφ is proper over SpecR. The Reduction Lemma, stated and proved in
the next subsection, will allow us to prove properness, and it will also be a key tool in the
Chinese Remainder Theorem algorithm detailed in §5.

2.1. Properness. If k is a non-Archimedean field (not necessarily complete) with valuation
ring o, we say that an endomorphism φ : P1

k → P1
k has good reduction if there exists a

morphism Φ : P1
o → P1

o that agrees with φ on the generic fiber.

Reduction Lemma. Let k be a non-Archimedean field with valuation ring o and residue
field F, and let φ ∈ k(z) be a rational function of degree at least 2 (which is equivalent
to a morphism P1

k → P1
k). Suppose that φ has good reduction. Then every element of

Autφ(k) has good reduction, and the canonical reduction o → F induces a homomorphism
red : Autφ(k)→ Autφ(F). If F has characteristic p > 0 (resp. characteristic zero), then the
kernel of reduction is a p-group (resp. trivial).

The proof of the Reduction Lemma uses dynamics on the Berkovich projective line. For a
comprehensive background, see [BR10]. For a more concise summary of the ideas used here,
we direct the reader to [Fab13].

Proof. Let Ck be a minimal complete and algebraically closed non-Archimedean extension
of k, and let P1 be the Berkovich analytification of the projective line P1

Ck . The morphism
φ extends functorially to P1. We use two key facts due to Rivera-Letelier [RL05, Thm. 4]:

(1) a rational function f has good reduction if and only if the Gauss point ζ ∈ P1 is
totally invariant; i.e., f−1(ζ) = {ζ}, and

(2) a rational function of degree at least 2 has at most one totally invariant point in
P1 r P1(Ck).

For f ∈ Autφ(k), we have

f−1(ζ) = f−1(φ−1(ζ)) = (φ ◦ f)−1(ζ) = (f ◦ φ)−1(ζ) = φ−1(f−1(ζ)).
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Hence f−1(ζ) is a totally invariant point for φ, so that f(ζ) = ζ. Equivalently, f has good
reduction. Thus the reduction map red : Autφ(k) → Autφ(F) is well-defined, and it is
evidently a homomorphism.

Now we compute the kernel of reduction. Suppose red(f) is trivial. Without loss of
generality, we may replace k with a finite extension in order to assume that f has a k-
rational fixed point. Moreover, we may conjugate f by an element of PGL2(o) in order to
assume that f(∞) =∞, so f(z) = αz + β.

Silverman has shown that Autφ(L) is a finite group for any algebraically closed field L

[Sil07, Prop. 4.65]1, so f necessarily has finite order m ≥ 1. The equation fm(z) = z shows
that α is an m-th root of unity. But red(f) is trivial, so the image of α in the residue field F
is 1. If k has residue characteristic zero, then we conclude that α = 1 and β = 0. Otherwise,
we find that α is a p-power root of unity in k, and hence f has p-power order in Autφ(k). �

Remark 2.3. A different proof of the first part of the Reduction Lemma can be given using
the maximum modulus principle in non-Archimedean analysis [PST09, Lem. 6].

Proposition 2.4. Let F be a field, and let n ≥ 2 be an integer. Suppose that φ : P1
F → P1

F

is a morphism of degree d ≥ 2 such that Autφ(F ) contains an element of order n. Then n
divides one of d, d− 1, or d+ 1.

Proof. We may assume without loss of generality that F is algebraically closed. Let s ∈
Autφ(F ) have order n. We conjugate one of the fixed points of s to ∞, so that s =

(
α β
0 1

)
.

(Note that replacing s with usu−1 has the effect of replacing φ with uφu−1.) The proof
divides into two cases, depending on whether α = 1 or α 6= 1.

If α = 1, then s has only one fixed point, and n = char(F ) is necessarily prime.
Replace s with

(
β−1 0
0 1

)
s
(
β 0
0 1

)
in order to assume that β = 1. It follows that φ(z+1)−1 =

φ(z), or equivalently, that the function φ(z)−z is invariant under the map z 7→ z+1. Hence
there exists a rational function ψ(z) ∈ F (z) such that φ(z) − z = ψ(zn − z). We conclude
that deg(φ) = n · deg(ψ) or n · deg(ψ) + 1.

Now suppose that α 6= 1, so s has two distinct fixed points: ∞ and β/(1 − α). We may
conjugate the second fixed point to 0 in order to assume that β = 0. Note that this implies
that α ∈ F× has multiplicative order n. To say that s is an automorphism of φ is equivalent
to saying that φ(z)/z is invariant under the map z 7→ αz. Hence there is a rational function
ψ ∈ F (z) such that φ(z)/z = ψ(zn). So deg(φ) = n · deg(ψ) or n · deg(ψ)± 1. �

The Reduction Lemma yields an injectivity statement for reduction of automorphisms at
all but finitely many places of a number field. For notation, if K is a number field and v is a
finite place of K, we write Kv and Fv for the completion of K at v and the residue field of Kv,
respectively. If φ ∈ K(z) is a rational function, we say that it has good reduction at v if
the induced rational function over Kv has good reduction in the above sense. (Equivalently,
φ has good reduction at v if one can reduce its coefficients modulo v, and the resulting
endmorphism of P1

Fv has the same degree as φ.)

Proposition 2.5. Let K be a number field and let φ ∈ K(z) be a rational function of degree
d ≥ 2. Define S0 to be the set of rational primes given by

S0 = {2} ∪
{
p odd :

p− 1

2

∣∣∣[K : Q] and p | d(d2 − 1)

}
,

1Alternatively, §4 gives a conceptually simpler proof of Silverman’s result.
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and let S be the (finite) set of places of K of bad reduction for φ along with the places
that divide a prime in S0. Then redv : Autφ(K) → Aut(Fv) is a well defined injective
homomorphism for all finite places v outside S.

Proof. By the Reduction Lemma, it suffices to prove that if v 6∈ S, then Autφ(K) has no
element of order p, where v | p. Suppose otherwise.

The group PGL2(C) contains a unique subgroup of order p, up to conjugation, so that an

element of order p is conjugate to
(
ζp 0

0 ζ−1
p

)
. Taking traces shows that ζp + ζ−1p ∈ K. Note

that [Q(ζp + ζ−1p ) : Q] = 1
2
(p − 1) for p > 2, so that p−1

2
| [K : Q]. If Autφ(K) contains

an element of order p, then p divides d(d2 − 1) by Proposition 2.4. Hence p ∈ S0, and so
v ∈ S. �

Proposition 2.5 often allows one to determine the group structure of Autφ(K) very quickly
by computing Autφ(Fv) for a few places v 6∈ S. This is analogous to the way one typically
computes the torsion subgroup of an elliptic curve over a number field; see [Sil09, VII.3]. (If
one wishes to compute the elements of Autφ(K) rather than just the group structure, then
more work is required.)

2.2. Proof of Theorem 2.1. Fix a noetherian commutative ring R. Over R, PGL2 may be
embedded as an affine subvariety of P3

R = Proj R[α, β, γ, δ]; indeed, it is the complement of
the quadric αδ−βγ = 0. Let φ : P1

R → P1
R be a nonconstant endomorphism. We may define

Autφ as a subgroup scheme of PGL2 as follows. After fixing coordinates of P1
R, the morphism

φ can be given by a pair of homogeneous polynomials Φ = (Φ0(X, Y ),Φ1(X, Y )) of degree
d = deg(φ) with coefficients in R such that the homogeneous resultant Res(Φ0,Φ1) is a unit
in R. The pair Φ0,Φ1 is unique up to multiplication by a common unit in R. Similarly, for
any R-algebra S, an element f ∈ PGL2(S) may be given by a pair

F = (αX + βY, γX + δY ), with α, β, γ, δ ∈ S and αδ − βγ ∈ S×.

Note that f−1 is represented by the pair F−1 := (δX−βY,−γX+αY ). Then f ◦φ◦f−1 = φ
is equivalent to saying that F ◦ Φ ◦ F−1 and Φ define the same morphism on P1

S → P1
S. If

we define (Φ′0(X, Y ),Φ′1(X, Y )) = F ◦ Φ ◦ F−1, then this is equivalent to

Φ0(X, Y )Φ′1(X, Y )− Φ1(X, Y )Φ′0(X, Y ) = 0. (2.1)

The expression on the left is a homogeneous polynomial of degree 2d in X and Y whose
coefficients are homogeneous polynomials in R[α, β, γ, δ]. So (2.1) gives 2d + 1 equations
that cut out a closed subscheme of PGL2 defined over R. One checks readily that Autφ(S)
is a subgroup of PGL2(S) for every S.

Next we argue that Autφ is a finite group scheme over R when φ has degree at least 2. The
map Autφ → SpecR is quasi-finite. Indeed, it suffices to check this statement on geometric
fibers, and it is known that Autφ(L) is a finite group for any algebraically closed field L
[Sil07, Prop. 4.65].

Moreover, Autφ is proper over SpecR. Indeed, since Autφ and SpecR are noetherian,
this can be checked using the valuative criterion for properness using only discrete valuation
rings [Har77, Ex. II.4.11]. Let o be a discrete valuation ring with field of fractions k, and
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consider a commutative diagram

Spec k //

��

Autφ

��
Spec o //

99

SpecR.

The left vertical map is the canonical open immersion, and the right vertical map is the
structure morphism. We must show there is a unique morphism Spec o→ Autφ that makes
the entire diagram commute. Without loss of generality, we may assume that R = o and
that the lower horizontal arrow is the identity map.

If v : k → Z∪{+∞} is the canonical extension of the valuation on o, then we may endow
k with the structure of a non- Archimedean field by setting |x| = e−v(x) for every x ∈ k.
(Note that we interpret e−∞ as zero.) Since φ is defined over o, it has good reduction.
The Reduction Lemma asserts that every k-automorphism of φ also has good reduction.
Equivalently, every k-valued point may be extended to an o-valued point, which is what we
wanted to show.

We now know that Autφ → SpecR is a quasi-finite proper morphism. Zariski’s main
theorem tells us that it factors as an open immersion of R-schemes Autφ → X followed by
a finite morphism X → SpecR. But Autφ is proper, so any open immersion is actually an
isomorphism. Hence Autφ is finite over SpecR.

3. The conjugation scheme

As in the previous section, we let R be a noetherian commutative ring with 1, and we
consider rational functions φ, ψ : P1

R → P1
R of degree d ≥ 2. The development of the R-

scheme of rational functions of degree 1 conjugating φ to ψ proceeds along similar lines as
the construction of the scheme Autφ in the previous section. We will be content to state the
results and only sketch the major differences here.

Definition. Fix an integer d ≥ 2, and let φ, ψ : P1
R → P1

R be two endomorphisms of degree
d. Write Set for the category of sets. Let Conj

φ,ψ
: R-Alg → Set denote the functor given

by

Conj
φ,ψ

(S) = {f ∈ Aut(P1
S) : f ◦ φ ◦ f−1 = ψ}.

The functor Conj
φ,ψ

acts on R-algebra morphisms by base extension of the associated set of

conjugation maps.

Theorem 3.1. Let R be a noetherian commutative ring with 1, let d ≥ 2 be an integer, and
let φ, ψ : P1

R → P1
R be endomorphisms of degree d. Then the functor Conj

φ,ψ
is represented

by a closed finite R-subscheme Conjφ,ψ ⊂ PGL2.

Remark 3.2. The theorem does not preclude the possibility that Conjφ,ψ is the empty scheme.
The group scheme PGL2 has relative dimension 3 over R, while the space Ratd of endomor-
phisms of P1 of degree d has relative dimension 2d + 1 > 3. So for a fixed φ ∈ Ratd(R), a
general choice of ψ will yield Conjφ,ψ = ∅.

Remark 3.3. When Conjφ,ψ is not the empty scheme, it is a principal homogeneous space for
Autφ (and Autψ). This observation will be used explicitly to show that Conjφ,ψ is quasi-finite.
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The construction of the closed subscheme Conjφ,ψ ⊂ PGL2 is similar to that of Autφ in
§2, so we leave the details to the reader. Note that the equations defined by (2.1) remain
equally valid in this setting if we write Ψ = (Ψ0(X, Y ),Ψ1(X, Y )) for a homogenization
of ψ and replace Φi with Ψi. In particular, Conjφ,ψ is cut out as a subscheme of PGL2

by 2d + 1 homogeneous polynomials of degree d + 1 in the four variables α, β, γ, δ, where
PGL2 ⊂ Proj R[α, β, γ, δ].

In order to establish that Conjφ,ψ is finite over SpecR, one must argue that it is proper
and quasi-finite. Properness follows from a direct generalization of the Reduction Lemma
(and its proof):

Reduction Lemma (Part II). Let k be a non-Archimedean field with valuation ring o and
residue field F, and let φ, ψ ∈ k(z) be rational functions of degree at least 2. Suppose that
both φ and ψ have good reduction. Then every element of Conjφ,ψ(k) has good reduction,
and the canonical reduction o → F induces a map of sets redφ,ψ : Conjφ,ψ(k) → Conjφ,ψ(F).
If the order of Autφ(k) is relatively prime to the characteristic of F, then redφ,ψ is injective.

Proof. Only the final statement of the lemma requires further comment. The Reduction
Lemma for Autφ shows that the kernel of the homomorphism redφ : Autφ(k) → Autφ(F) is
trivial. If f, g ∈ Conjφ,ψ(k) have the same image in Conjφ,ψ(F), then f−1g lies in the kernel
of redφ, so that f = g. �

To complete the proof of Theorem 3.1, it remains to show that Conjφ,ψ is quasi-finite, for
which it suffices to take R = F to be a field and prove that Conjφ,ψ(F ) is finite. If Conjφ,ψ(F )
is empty, we are finished. Otherwise, fix an element f0 ∈ PGL2(F ) that conjugates φ to ψ.
Given an element f ∈ Conjφ,ψ(F ), we see that

(f−10 ◦ f) ◦ φ ◦ (f−10 ◦ f)−1 = f−10 ◦
(
f ◦ φ ◦ f−1

)
◦ f0 = f−10 ◦ ψ ◦ f0 = φ.

That is, the association f 7→ f−10 ◦ f defines a map of sets

Conjφ,ψ(F )→ Autφ(F ),

which one readily verifies is a bijection. Since Autφ(F ) is a finite set, so is Conjφ,ψ(F ).
We close this section with a version of Proposition 2.5 that applies to conjugation sets.

Corollary 3.4. Let K be a number field and let φ, ψ ∈ K(z) be rational functions of degree
d ≥ 2. Define S0 to be the set of rational primes given by

S0 = {2} ∪
{
p odd :

p− 1

2

∣∣∣[K : Q] and p | d(d2 − 1)

}
,

and let S be the (finite) set of places of K of bad reduction for φ or ψ along with the places
that divide a prime in S0. If Conjφ,ψ(K) is nonempty, then redv : Conjφ,ψ(K)→ Conjφ,ψ(Fv)
is a well defined injection of sets for all finite places v outside S.

Proof. Let f0 ∈ Conjφ,ψ(K). For v 6∈ S, we have the following diagram of morphisms of sets.

Conjφ,ψ(K)
redv //

f−1
0 ◦
��

Conjφ,ψ(Fv)

redv(f0)−1◦
��

Autφ(K)
redv // Autφ(Fv)
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The vertical arrows denote postcomposition with the indicated element; they are bijections
by the discussion immediately preceding this proof. The Reduction Lemmas show that the
horizontal arrows are well defined. The diagram commutes because PGL2 is a group scheme.
We have already shown the lower horizontal arrow is injective (Proposition 2.5), so the top
one must share this property. �

4. Algorithm 1: Method of Invariant Sets

Let F be an arbitrary field, and suppose φ, ψ : P1
F → P1

F are morphisms of degree at
least 2. In this section, we describe a geometric algorithm to compute Conjφ,ψ(F ), where

F is an algebraic closure of F . (Of course, the algorithm computes Autφ(F ) when φ = ψ.)
More precisely, the method of invariant sets produces a finite Galois extension E/F and
the set Conjφ,ψ(E) = Conjφ,ψ(F ). With some small additional work, we will also be able to
compute Conjφ,ψ(F ).

4.1. Overview. The key to the algorithm lies in constructing what we call an invariant
pair for φ and ψ: a pair of subsets Tφ, Tψ ⊂ P1(F ) such that

• #Tφ = #Tψ ≥ 3, and
• s(Tφ) = Tψ for every s ∈ Conjφ,ψ(F ).2

Given an invariant pair, we have

Conjφ,ψ(F ) ⊂ HomF (Tφ, Tψ) ⊂ PGL2(F ).

For F a given field of definition for φ and ψ, one cannot always find the required sets Tφ and
Tψ in P1(F ), but they are always constructible over a finite extension E/F , yielding

Conjφ,ψ(F ) = Conjφ,ψ(E) ⊂ HomE(Tφ, Tψ) ⊂ PGL2(E).

Since any element of PGL2(E) is uniquely determined by its action on three points, we
can use linear algebra to determine all maps carrying a set of three distinct points of Tφ to a
set of three distinct points of Tψ; these will be candidate elements of Conjφ,ψ(E). It is then
a simple matter to check if the candidate s satisfies s ◦ φ = ψ ◦ s.

4.2. Algorithm. We first show how to compute Conjφ,ψ(E) given an invariant pair defined
over the field extension E/F . We also give a particular construction of an invariant pair,
although certainly there are others one could use. Then we describe a simple technique for
determining which elements of Conjφ,ψ(E) are defined over the ground field F . Finally, we
briefly discuss the complexity of the algorithm.

4.2.1. Conjugation Sets from Invariant Pairs. Let E be any field over which φ and ψ are
defined, and suppose that we have an invariant pair Tφ, Tψ ⊂ P1(E). Algorithm 1 describes
the process of computing Conjφ,ψ(E).

Proof of Correctness of Algorithm 1. Given s ∈ Conjφ,ψ(E), there is a triple of distinct in-
dices i, j, k ∈ {1, . . . , n} such that

s(τ1) = ηi, s(τ2) = ηj, and s(τ3) = ηk.

2If Conjφ,ψ(E) = ∅, then the second condition is vacuous, but we will not know this a priori.
9



Algorithm 1 — Compute Conjφ,ψ(E) given an invariant pair in P1(E)

Input:

• nonconstant rational functions φ, ψ ∈ E(z)
• an invariant pair Tφ = {τ1, . . . , τn} and Tψ = {η1, . . . , ηn} of P1(E)

Output: the set Conjφ,ψ(E)

create an empty list L

for each triple of distinct integers i, j, k ∈ {1, . . . , n}:
compute s ∈ PGL2(E) by solving the system of linear equations

s(τ1) = ηi, s(τ2) = ηj, s(τ3) = ηk

if s ◦ φ = ψ ◦ s: append s to L

return L

Conversely, given a triple of distinct indices i, j, k ∈ {1, . . . , n}, there exists a unique element
s ∈ PGL2(E) such that

s(τ1) = ηi, s(τ2) = ηj and s(τ3) = ηk.

These three equations are linear in the coefficients of s. One now determines if this candidate
element s actually satisfies the functional equation

s ◦ φ = ψ ◦ s.

If that is the case, then s ∈ Conjφ,ψ(E). �

4.2.2. Constructing an Invariant Pair. We now suppose that φ and ψ are conjugate rational
functions defined over a field F and give a construction of an invariant pair Tφ and Tψ. We
may assume that deg(φ) = deg(ψ) = d, since otherwise φ and ψ are not conjugate.

Let Fix(φ) be the set of fixed points of φ, which has cardinality between 1 and d + 1,
inclusive. If s ∈ Conjφ,ψ(F ) and x ∈ Fix(φ), then

ψ(s(x)) = s(φ(x)) = s(x).

That is, s necessarily maps Fix(φ) bijectively onto Fix(ψ). Consequently, if the number of
fixed points of φ differs from that of ψ, then φ and ψ are not conjugate.

A similar calculation shows that if x ∈ P1(F ) is any point, then s maps the set φ−n(x)
bijectively onto the set ψ−n(s(x)) for each n ≥ 1. Hence if φ and ψ are conjugate, it is
necessary that the sets φ−n(Fix(φ)) and ψ−n(Fix(ψ)) have the same cardinality for each
n ≥ 1.

Define a set Tφ ⊂ P1(F ) by the following formula:

Tφ =


Fix(φ) if # Fix(φ) ≥ 3

φ−1(Fix(φ)) if # Fix(φ) = 2

φ−2(Fix(φ)) if # Fix(φ) = 1.

(4.1)

We claim that Tφ has cardinality at least 3 in all cases. This is evident in the first case.
10



In the second case, note that Fix(φ) ⊂ φ−1(Fix(φ)). So if #Tφ = # Fix(φ) = 2, then each
point of Fix(φ) is totally ramified for φ. The derivative at each of the fixed points vanishes,3

which means that each element of Fix(φ) has fixed point of multiplicity 1. But counting
multiplicities, the total number of fixed points of a map of degree d is d + 1 ≥ 3. (See, for
example, [FG11, Appx. A].) This contradiction gives #Tφ ≥ 3.

Finally, suppose that we are in the third case, so that Fix(φ) = {x}. We claim that
#φ−1(x) ≥ 2. If not, x is ramified for φ, which implies that the derivative φ′(x) vanishes
there. But the fact that x is the unique fixed point of φ means that in local coordinates
centered at x our map is of the form

z 7→ z + ad+1z
d+1 + · · · with ad+1 6= 0.

The derivative cannot vanish at x, and we must have #φ−1(x) ≥ 2 as desired. If φ−1(x)
consists of at least three points, then evidently so does Tφ = φ−2(x). Otherwise, φ−1(x) =
{x, y}, which means that Tφ = φ−2(x) = {x, y} ∪ φ−1(y), which satisfies 3 ≤ #Tφ ≤ d+ 2.

Define Tφ as in equation (4.1), and define Tψ applying the same recipe to ψ. Write
E = F (Tφ∪Tψ) for the field extension generated by the elements of Tφ∪Tψ. Then s(Tφ) = Tψ
for every s ∈ Conjφ,ψ(E). We have therefore constructed an invariant pair.

4.2.3. Descent. While the greatest strength of the method of invariant sets lies in computing
the absolute conjugating set, it can be adjusted to compute the conjugating set over a
fixed ground field F . To use Algorithm 1 to compute Conjφ,ψ(F ), we make the following
modification. In the final step, after determining that s ◦ φ = ψ ◦ s, we also check that the
three points s(0), s(1), and s(∞) are defined over F . If so, then append s to the set L.

To see that this has the desired effect, we note that the element s ∈ Conjφ,ψ(E) is com-
pletely determined by its action on 3 distinct points of P1(F ). Moreover, if s maps three
distinct F -rational points to three (distinct) F -rational points, then the system of linear
equations determined by these 3 relations will have a solution over F . So s ∈ Conjφ,ψ(F ),
as desired.

To implement this strategy as an algorithm, we require an efficient method to detect if an
element of a finite extension E/F lies in F (without computing the Galois group). We may
represent E as an F vector space with basis 1, α1, . . . , αn, so that any element β ∈ E may
now be represented uniquely by a vector c0 + c1α1 + · · ·+ cnαn, where ci ∈ F . The element
β lies in F if and only if c1 = · · · = cn−1 = 0.

4.2.4. Complexity. The degree d = deg(φ) = deg(ψ) is the principle measure of complexity
in this algorithm. If the coefficients of φ, ψ, and a candidate conjugating map s ∈ PGL2(E)
have length at most k bits, then verifying the equality s ◦ φ = ψ ◦ s requires O(d3k2) bit
operations in general. This can be reduced to O(d2 log3 q) if E is a finite field with q elements.
The number of candidates s ∈ PGL2(E) is approximately #T 3

φ/6 = O(d3), which can make
this algorithm inefficient if the degree is large.

4.3. Implementation Notes. The main computational difficulty in implementation of this
algorithm lies in performing operations in the field extension E. Typically, the invariant pairs
described in Section 4.2.2 generate an extension of the field F of degree (deg(φ) + 1)2. (It is
deg(φ) + 1 when using this algorithm to compute the automorphism group.) In practice, if
we only want the F -rational points of Conjφ,ψ or Autφ, then we can occasionally work with

3More precisely, the induced map Tφ on the tangent space TP1
x is zero.
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a smaller field by building arithmetic considerations into the construction of the invariant
pair. We do so by exploiting the following observation:

Lemma 4.1. Fix an algebraic closure F and an invariant pair Tφ, Tψ ⊂ P1(F ). Then for
any element s ∈ Conjφ,ψ(F ) and any τ ∈ Tφ, we have F (τ) = F (s(τ)) and s(τ) ∈ Tψ. (Here
we set F (∞) = F.)

Proof. Since s ∈ AutP1(F ), any element of Gal(F/F ) fixes τ if and only if it fixes s(τ). Thus,
by Galois theory, the two elements generate the same field. �

The lemma implies that we can modify Algorithm 1 and only consider triples of distinct
integers i, j, k such that F (τi) = F (ηi). We carry this out as follows. We first construct Tφ as
a union Tφ,0∪Tφ,1∪· · ·∪Tφ,r where each Tφ,i is such that any 2 elements generate the same field
extension, while any two elements from distinct Tφ,i do not generate the same field extension.
We do the same for Tψ. Renumbering if necessary, we may assume that #Tφ,i ≤ #Tφ,i+1 and
#Tψ,i ≤ #Tψ,i+1 for all i. Moreover, we may assume that F (Tφ,i) = F (Tψ,i) for each i; if it is
not possible to ensure these conditions, then Conjφ,ψ(F ) is empty. Now select the smallest
set of indices I such that the union ∪i∈ITφ,i contains at least 3 elements. Run Algorithm 1
with Tφ and Tψ replaced by ∪i∈ITφ,i and ∪i∈ITψ,i.

5. Algorithm 2: Chinese Remainder Theorem

Let K be a number field and suppose φ, ψ : P1
K → P1

K are morphisms of degree at least 2.
In this section, we describe an algorithm to compute Conjφ,ψ(K) or Autφ(K) that combines
local and global arithmetic information.

Although this technique is limited to rational functions defined over number fields (or
global function fields after appropriate modifications), it has the benefit of scaling well
in practice as the degree grows, and it is particularly efficient at determining if the set
Conjφ,ψ(K) is empty. However, if there exists a conjugating map (or automorphism) whose
coefficients have moderately large height, then this algorithm may take quite a while to
detect it. See the sample run times in §8.

5.1. Overview. This algorithm uses an approach that is ubiquitous in number theory: first
compute the conjugation set over the residue field Fv for some finite place(s) v, and then use
the local information to obtain a global answer by applying a suitable form of the Chinese
Remainder Theorem.

As a first step, we prove that for any invariant pair (as in §4.1) Tφ, Tψ that is stable
under the action of Galois, there exists a constant C = C(K,φ, ψ, ) such that any element in
Conjφ,ψ(K) has relative multiplicative height at most C (see Proposition 5.1). Thus we need
only consider the finitely many elements of AutP1(K) of height at most C. Typically this
height bound is much larger than necessary, so it is only used to ensure that our algorithm
terminates.

We further restrict our search by considering only those conjugating elements that lie in
congruence classes corresponding to elements of Conjφ,ψ(Fv) at certain good places v of K,
since Corollary 3.4 gives an injection Conjφ,ψ(K) ↪→ Conjφ,ψ(Fv) for all but finitely many
places. This local data can be computed first and then glued together using the Chinese
Remainder Theorem to obtain global conjugating elements.
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5.2. Algorithm. Pseudocode for the Chinese Remainder Theorem method is given in Al-
gorithm 2. We first provide a proof of the height bound used in the algorithm, followed by
a proof of correctness for the algorithm.

We use the following notation in the remainder of this section. (See, for example, [HS00,
B.2, B.7] for number-theoretic definitions.)

• For any closed subset T ⊂ P1(K), let fT ∈ K[w, z](0) be a homogeneous polynomial
whose zero set is precisely T .
• Let HK : P1(K)→ R≥1 denote the relative multiplicative height for K.
• Let L2(f) denote the L2-norm of a polynomial f .
• Write OK for the ring of integers of K, and write S for the finite set of places of OK

defined in Corollary 3.4. Then Conjφ,ψ(K) ↪→ Conjφ,ψ(Fv) for each place v not in S.
• For a finite set of prime ideals p0, . . . , pn of OK corresponding to places v0, . . . , vn not

in S, we set a =
∏

0≤i≤n pi and L =
⋃

0≤i≤n Conjφ,ψ(Fvj). Let G ⊆ Aut(P1
OK/a) be a

subset that surjects onto Conjφ,ψ(Fvj) for each j. We write G = CRT(L).

Algorithm 2 — Computation of Conjφ,ψ(K) via the Chinese Remainder Theorem

Input: a number field K and rational functions φ, ψ ∈ K(z) of degree d ≥ 2
Output: the set Conjφ,ψ(K)

choose an invariant pair Tφ, Tψ as in Section 4.1
set M = 6[K:Q]L2(fTφ)3L2(fTψ)3

create an empty list L, and set a = 〈1〉
for v a prime of good reduction such that Conjφ,ψ(K)→ Conjφ,ψ(Fv) is injective:

compute Conjφ,ψ(Fv)
if Conjφ,ψ(Fv) = ∅:

return ∅
else:

append Conjφ,ψ(Fv) to L, and set a = apv
set G = CRT(L) and initialize an empty list Conjs
for s in G:

set s′ ∈ PGL2(OK) to be a lift of s of minimal height
if HK(s′) ≤M and s′ ◦ φ = ψ ◦ s′:

append s′ to Conjs

if N(a) ≥ 2[K:Q]M2 or if #Conjs = #Conjφ,ψ(Fv) for any v | a:
return Conjs

5.2.1. Height bounds for conjugating elements.

Proposition 5.1. Let T, T ′ ⊂ P1(K) be Galois invariant sets of order at least 3. Then for
any s ∈ Aut(P1

K) ⊂ P3(K) such that s(T ) = T ′, we have

HK(s) ≤ 6[K:Q]L2(fT )3L2(fT ′)
3.

Remark 5.2. This bound is typically far from optimal. (For an example, see §5.3.)
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Proof. Let s be as in the statement of the Proposition. Let τ1, τ2, τ3 be 3 distinct elements
of T , and let ηi := s(τi) ∈ T ′. In coordinates, we write τi = (τi,0 : τi,1) and ηi = (ηi,0 : ηi,1).
Since an automorphism of P1 is determined by its action on three elements, we have an
expression for s =

(
α β
γ δ

)
in terms of τi,j, ηi,j, i.e.,

α =
∑

σ∈S3
(sgn σ)Bσ(1)Cσ(2)Dσ(3), β =

∑
σ∈S3

(sgn σ)Aσ(1)Cσ(2)Dσ(3),
γ =

∑
σ∈S3

(sgn σ)Aσ(1)Bσ(2)Dσ(3), δ =
∑

σ∈S3
(sgn σ)Aσ(1)Bσ(2)Cσ(3),

where Ai = τi,0ηi,1, Bi = −τi,1ηi,1, Ci = −τi,0ηi,0, and Di = τi,1ηi,0.
This expression allows us to obtain a bound on the local height of s. Let v be any place

of K and let εv = 6 if v | ∞ and εv = 1 if v -∞. Then, by the triangle inequality,

|α|v ≤ εv ·max
σ∈S3

|Bσ(1)Cσ(2)Dσ(3)|v ≤ εv
∏

1≤i≤3

max{|τi0|v, |τi1|v} ·max{|ηi0|v, |ηi1|v}.

One can easily check that the same bound holds for |β|v, |γ|v, |δ|v. It follows that

HK(s) =
∏
v

max{|α|v, |β|v, |γ|v, |δ|v}[Kv :Qv ]

≤
∏
v

ε[Kv :Qv ]v ·
∏

1≤i≤3

max{|τi0|v, |τi1|v}[Kv :Qv ] ·max{|ηi0|v, |ηi1|v}[Kv :Qv ]

= 6[K:Q]
∏

1≤i≤3

HK(τi)HK(ηi).

Since HK(τi) ≤ L2(fT ) and HK(ηi) ≤ L2(fT ′) [HS00, Lemma B.7.3.1], this completes the
proof. �

Corollary 5.3. Let φ, ψ ∈ K(z) be rational functions of degree ≥ 2, let Tφ, Tψ ⊂ P1(K)
be an invariant pair that is stable under the action of Gal(K/K).4 Then every element of
Conjφ,ψ(K), viewed as an element of P3(K), has relative multiplicative height bounded by

6[K:Q]L2(fTφ)3L2(fTψ)3.

5.2.2. Proof of correctness. The correctness of Algorithm 2 is immediate from the next propo-
sition.

Proposition 5.4. Retain the notation and hypotheses of Proposition 5.1. Let v0, . . . , vn be
finite places of K such that

(1) φ and ψ have good reduction at vi for all i;
(2) the reduction map Conjφ,ψ(K)→ Conjφ,ψ(Fvi) is injective for all i; and

(3)
∏

i N(vi) ≥ 2[K:Q]M2, where M = 6[K:Q]L2(fTφ)3L2(fTψ)3.

For any tuple (gi) ∈
∏

i Conjφ,ψ(Fvi), let gK ∈ Aut(P1
K) be a simultaneous lift of each gi of

minimal height. If (gi) ∈ im
(
Conjφ,ψ(K)→

∏
i Conjφ,ψ(Fvi)

)
, then gK ∈ Conjφ,ψ(K).

We first prove two lemmas.

Lemma 5.5. Let b be a nonzero fractional ideal of OK, and write it as a quotient b = b+/b−

of relatively prime integral ideals. Then HK(b) ≥ N(b+) for all nonzero b ∈ b.

4Observe that the invariant pairs constructed in §4.2.2 are Galois stable.
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Proof. Since b ∈ b, we have |b|v ≤ 1 for any finite place v such that v(b) ≥ 0. Therefore

HK(b) =
∏
v|∞

max{1, |b|v}[Kv :Qv ]
∏
v-∞
v(b)<0

max{1, |b|v}[Kv :Qv ]

≥
∏
v|∞

|b|[Kv :Qv ]v

∏
v-∞
v(b)<0

|b|[Kv :Qv ]v =
∏
v-∞
v(b)≥0

|b|−[Kv :Qv ]v ,

where the last equality follows from the product formula. Let ep be such that b =
∏

pep .

Since b ∈ b, we have v(b) ≥ epv . Hence |b|−[Kv :Qv ]v ≥ N(pv)
epv . �

Lemma 5.6. Let a ⊂ OK be an integral ideal, and let ρa : Pn(OK)→ Pn(OK/a) denote the
canonical projection. For each b = (b0 : b1 : · · · : bn) ∈ Pn(OK/a), there is at most one

element a = (a0 : a1 : · · · : an) ∈ ρ−1a (b) with HK(a) <
(
2−[K:Q]N(a)

)1/2
.

Proof. Let a, a′ ∈ Pn(OK) be such that HK(a), HK(a′) <
(
2−[K:Q]N(a)

)1/2
and such that

ρa(a) = ρa(a
′). Since a ∈ Pn(OK), there exists a coordinate i0 such that ai0 6∈ a. It follows

that a′i0 6∈ a too.
Then for each i and each place v, we have

max

{
1,

∣∣∣∣ aiai0 − a′i
a′i0

∣∣∣∣
v

}
≤ εv max

`

{∣∣∣∣ a`ai0
∣∣∣∣
v

}
·max

`

{∣∣∣∣ a′`a′i0
∣∣∣∣
v

}
,

where εv = 1 or 2 depending on whether v is non-Archimedean or Archimedean. Taking the

product over all v gives HK

(
ai
ai0
− a′i

a′i0

)
≤ 2[K:Q]HK(a)HK(a′). The latter is less than N(a)

by hypothesis, and ai
ai0
− a′i

a′i0
lies in the fractional ideal (ai0a

′
i0

)−1a, so the preceding lemma

implies that ai
ai0

=
a′i
a′i0

. That is, a = a′. �

Proof of Proposition 5.4. Assume that (gi) ∈ im
(
Conjφ,ψ(K)→

∏
i Conjφ,ψ(Fvi)

)
and let

g′ ∈ Conjφ,ψ(K) denote its pre-image. Note that g′ is unique by assumption (2). By
Corollary 5.3,

HK(g′) ≤M ≤

(
2−[K:Q]

∏
i

N(vi)

)1/2

.

Applying Lemma 5.6 to the ideal a = (
∏

i N(vi)), we conclude that g′ must have minimal
height among all lifts, so g′ = gK ∈ Conjφ,ψ(K). �

5.3. Implementation Notes. When computing Conjφ,ψ(K), it is important to build in as
many early termination conditions as possible, since typically the elements of Conjφ,ψ(K)
have significantly smaller height than the theoretical bound M . This is of course true when
Conjφ,ψ(K) is trivial, but it remains true even in the nontrivial case. For example, consider
the function φ(z) = 345025251z6 ∈ Q(z). (See the last line of Table 3.) The height bound
produced by Corollary 5.3 has over 50 digits, while, in contrast, the height of the unique
nontrivial Q-rational automorphism is 2601. The same phenomenon can be seen with many
of the examples in Table 2.
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5.3.1. Conjugation sets. In order to avoid extraneous computation, we want to detect as
quickly as possible when two rational functions are not conjugate. The method of invariant
sets suggests a useful criterion.

Let F be a field, let a ∈ F r {0}, let f1, . . . , fr ∈ F [X, Y ] be pairwise coprime irreducible
homogeneous polynomials, and let e1, . . . , er ≥ 1 be integers. We define the factoriza-
tion type (or simply type) of the polynomial f := af e11 · · · f err to be the multiset of pairs
{(deg(f1), e1), · · · , (deg(fr), er)}. Note that the degree of f is determined by its type. The
definition of type extends in the obvious way to inhomogeneous univariate polynomials.

Now suppose that φ, ψ ∈ F (z) are rational functions of degree d ≥ 2 such that Conjφ,ψ(F )
is nonempty. We saw in §4.2.2 that for each s ∈ Conjφ,ψ(F ), we have s(Fix(φ)) = Fix(ψ).
In fact, more is true. Write φ and ψ in homogeneous form as

Φ = (Φ0(X, Y ),Φ1(X, Y )) and Ψ = (Ψ0(X, Y ),Ψ1(X, Y )).

The polynomials fφ = XΦ1 − Y Φ0 and fψ = XΨ1 − YΨ0 determine the fixed points of φ
and ψ, respectively. Writing s in homogeneous form as

S = (S0(X, Y ), S1(X, Y )) = (αX + βY, γX + δY ),

the condition s ◦ φ ◦ s−1 = ψ may be translated as S ◦ Φ = λ · Ψ ◦ S for some λ ∈ F×. We
now see that

λfψ(S0, S1) = λ [S0 · (Ψ1 ◦ S)− S1 · (Ψ0 ◦ S)]

= S0 · (γΦ0 + δΦ1)− S1 · (αΦ0 + βΦ1)

= (αδ − βγ) (XΦ1 − Y Φ0) = (αδ − βγ)fφ.

(5.1)

Hence the types of fφ and fψ agree. Said another way, if the types of the polynomials fφ and
fψ do not match, then Conjφ,ψ(F ) is empty. Since s(φ−n(Fix(φ))) = ψ−n(Fix(ψ)) for every

n ≥ 1, a similar statement holds for the polynomials defining the nth preimages of the fixed
points.

Assume now that F = Fq is the finite field with q elements. By definition, the type of
a homogeneous polynomial f ∈ Fq[X, Y ] is computed by factoring it completely. However,
there are well known “folk methods” for calculating the type of f . Using only formal deriva-
tives and the Euclidean algorithm, one can determine the number of irreducible factors of a
given degree and the exponents to which they occur in f . (See [CZ81, §2].)

If F = K is a number field, then factoring fφ and fψ may not be computationally effi-
cient. An alternative approach is suggested by the Chinese Remainder Theorem method for
computing Conjφ,ψ(K). Let v be a non-Archimedean place of K at which both φ and ψ have
good reduction. Then each element of Conjφ,ψ(K) has good reduction at v, and we may
reduce equation (5.1) modulo v to obtain a relation between the fixed point polynomials of
φv and ψv, which are defined over the residue field Fv. If Conjφ,ψ(K) is nonempty, then for
each place of good reduction v for φ and ψ, the types of the polynomials fφ and fψ must
agree modulo v.5 Algorithm 2 provides a collection of places v that are sufficient to compute
the full set Conjφ,ψ(K) via the Chinese Remainder Theorem; one could use this set of places
v for our early termination criterion as well.

5When fφ and fψ are irreducible, it is equivalent to say that the splitting fields of fφ and fψ have the
same Dedekind zeta function [SP95]. One says that these splitting fields are “arithmetically equivalent.”
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5.3.2. Automorphism groups. In the case that φ = ψ, the above early termination criteria
will always fail since Autφ(F ) contains at least one element. In this case, one may instead
use group-theoretic considerations as early termination criteria. These considerations can
also be used in the CRT step, allowing us to avoid extraneous computation. We give an
example here, and the curious reader can find more details in our source code.

Example 5.7. It is possible for the reduction of Autφ(K) to be a proper subgroup of Autφ(Fv)
for all places v of good reduction. Consider the rational function φ(z) = 2z5. One can use
the method of invariant sets to check that

Autφ(Q) =
{
z, iz,−z,−iz, (

√
2z)−1, i(

√
2z)−1,−(

√
2z)−1,−i(

√
2z)−1

}
,

which is a dihedral group of order 8. For all primes p > 2, at least one of −1, 2,−2 is a square
in Fp. Therefore, Autφ(Fp) always contains Z/2×Z/2 or Z/4 as a subgroup. As the algorithm

is stated, we would compute a lift of every element in
∏19

p=5 Autφ(Fp). However, by p = 7 one

can already recognize that Autφ(Q) ⊆ Z/2 since Autφ(F5) = Z/4 and Autφ(F7) = Z/2×Z/2.
Our code checks for group-theoretic properties like this when deciding whether to terminate.

6. Algorithm 3: Method of Fixed Points

Let F be a field and let φ : P1
F → P1

F be a morphism of degree d ≥ 2. In this section we
describe an algorithm to compute Autφ(F ) that capitalizes on a connection between fixed
points of s ∈ Autφ(F ) and periodic points for φ of small period. This technique does not
require working with points in an extension field of F , although it does require one to detect
the linear and quadratic factors of univariate polynomials over F of degree O(d2). For this
reason, it outperforms our other methods over finite fields, and over number fields when the
degree is small. The CRT method is preferable for rational functions of larger degree over
number fields. (See §8 for the empirical distinction between large and small degree in this
context.)

6.1. Overview. A nontrivial element s ∈ Autφ(F ) has either one or two fixed points in
P1(F ). If x ∈ Fix(s), we have

s(φ(x)) = φ(s(x)) = φ(x). (6.1)

So φ(x) ∈ Fix(s), and Fix(s) consists of either one or two orbits for φ. From Proposition 2.4,
we also have strong conditions on the order of s ∈ Autφ(F ). Combining these facts with
an explicit change of coordinates on the fixed points of φ, we are able to conclude that a
candidate s must be conjugate to either(

ξ 0
0 1

)
for a root of unity ξ ∈ F (Fix(s)) , or(

1 λ
0 1

)
where λ ∈ F r {0}.

(Here F (Fix(s)) indicates the field extension formed by adjoining the fixed points of s to F .)
One can then loop over the finitely many possibilities for s and test if they are in Autφ(F ).
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6.2. Algorithm. Pseudocode is given in Algorithm 3. Throughout, we assume that either
F is finite, or that char(F ) - d(d − 1). For any φ-periodic point x ∈ P1(F ), write per(x)
for its exact period — i.e., the minimum positive integer i such that φi(x) = x. If x is not
periodic, write per(x) = +∞. For each pair of integers i, j ∈ {1, 2}, define the following set:

Zi,j = {x ∈ P1(F ) : per(x) = i, [F (x) : F ] = j}. (6.2)

We also define the following set of ordered pairs:

W = {(x, y) : φ(x) = x = φ(y), [F (x) : F ] = [F (y) : F ] = 1}. (6.3)

Finally, we write Z ′1,2 for the subset of Z1,2 consisting of points that generate an inseparable
extension of F ; evidently, it is necessary that char(F ) = 2 for Z ′1,2 to be nonempty.

These sets may be constructed by extracting the linear and quadratic factors of the polyno-
mials that define the fixed points of φ, the points of period 2, and the preimages of F -rational
fixed points. We write Z(2) for the set of unordered pairs of elements of a set Z.

6.2.1. Proof of correctness. It is clear that the output of Algorithm 3 is contained in Autφ(F )
and contains the identity. It remains to prove that Algorithm 3 finds every nontrivial element
of Autφ(F ).

Let s =
(
α β
γ δ

)
be a nontrivial element of Autφ(F ). The homogeneous polynomial defining

the fixed points of s is γX2 + (δ − α)XY − βY 2. In particular, s has either one or two
distinct fixed points.

Case 1: Two fixed points. Suppose that s ∈ Autφ(F ) has two distinct fixed points, x1
and x2. From equation (6.1), we have φ(x1), φ(x2) ∈ {x1, x2}. There are three possible cases:

(1) φ fixes both x1 and x2;
(2) φ swaps x1 and x2; or
(3) φ(x1) = x2 and φ fixes x2 (perhaps after interchanging x1 and x2).

Since φ is defined over F , the Galois conjugates of a fixed point must also be fixed points.
Thus in cases (1) and (2), either x1 and x2 are both F -rational, or they are quadratic
conjugates over F . In case (3), both x1 and x2 must be F -rational.

Now suppose that x1 and x2 are both F -rational in case (1) — i.e., that (x1, x2) ∈ Z(2)
1,1 .

Then we may select u ∈ PGL2(F ) such that u(x1) =∞ and u(x2) = 0. In this case,

s = u−1
(
ζ 0
0 1

)
u for some root of unity ζ ∈ F.

If ζ has order n, then n divides one of d, d+ 1, or d− 1 by Proposition 2.4. Therefore, s will

be found by the first for–loop of the algorithm with S = Z
(2)
1,1 .

Similarly, if s falls in case (2) with x1, x2 F -rational, or in case (3), then s will be found

in the part of the first for–loop corresponding to S = Z
(2)
2,1 and S = W , respectively.

For the case where x1, x2 are quadratic conjugates, we will use the following lemma.

Lemma 6.1. Let z1, z2 ∈ F be quadratic conjugates. Fix u ∈ PGL2(F ) so that u(z1) = 0
and u(z2) =∞, and let ξ ∈ F . Then

s := u−1
(
ξ 0
0 1

)
u
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Algorithm 3 — Computation of Autφ(F ) via the method of fixed points

Input: a field F and φ ∈ F (z) of degree ≥ 2
Output: the set Autφ(F )

create a list T of F -rational roots of Ci(X) := Xd+i − 1 for i = −1, 0, 1
create a list Λ containing −1 and roots of F -quadratic factors of Ci(X) for i = −1, 0, 1

create a list L = [z]
create the sets Zi,j,W defined in equations (6.2) and (6.3)

for each set S among Z
(2)
1,1 , Z

(2)
2,1 , and W :

for each pair (x, y) with x 6= y in S:
choose u ∈ PGL2(F ) such that u(x) =∞ and u(y) = 0
for ζ ∈ T r {1}:

set s(z) = u−1(ζu(z))
if s ◦ φ = φ ◦ s: append s to L

for each set S among (Z1,2 r Z1,1) and (Z2,2 r Z2,1):
for each element x in S:

set y to be the Galois conjugate of x
choose u ∈ PGL2(F (x, y)) such that u(x) =∞ and u(y) = 0
for ξ ∈ Λ:

set s(z) = u−1(ξu(z))
if s ◦ φ = φ ◦ s: append s to L

if p - d(d− 1) or # Fix(φ) 6≡ 1 (mod p) or (# Fix(φ) = 1 and #φ−1(Fix(φ)) 6≡ 1 (mod p)):
return L

if # Fix(φ) > 1: set T = Fix(φ)
else: set T = φ−1(Fix(φ))

for x ∈ Z1,1 ∪ Z ′1,2:
set F ′ = F (x)
choose u ∈ PGL2(F

′) such that u(x) =∞
choose y1 ∈ T r {x}
for y2 ∈ T r {x, y1}, y2 ∈ F ′(y1):

set λ = u(y2)− u(y1)
if s(z) := u−1(u(z) + λ) lies in PGL2(F ) and satisfies s ◦ φ = φ ◦ s:

append s to L

return L

defines a nontrivial finite-order element of PGL2(F ) if and only if ξ = −1 and char(F ) 6= 2,
or F (ξ) = F (z1) and ξ is a root of unity.

Proof. The element s is independent of our choice of u, so we may set u :=
(
1 −z1
1 −z2

)
. Then

s = u−1
(
ξ 0
0 1

)
u =

(
z1 − ξz2 (ξ − 1)z1z2

1− ξ ξz1 − z2

)
, (6.4)
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which is of order n if and only if ξ is an nth root of unity. (We neglect the determinant z2−z1
of u because the computation occurs in PGL2.) Write F ′ = F (z1) = F (z2). The element s
is defined over F if and only if ξ ∈ F ′ and the nontrivial element σ of Gal(F ′/F ) fixes z1−ξz2

1−ξ
and z2−ξz1

1−ξ . By expanding the resulting equations and noting that σ(z1) = z2, we see that

this happens if and only if ξξσ = 1, which completes the proof. �

Returning to our setup, we suppose that s ∈ Autφ(F ) and Fix(s) = {x1, x2} with x1 and x2
quadratic Galois conjugates. If x1, x2 ∈ Z1,2rZ1,1 (case (1)) or if x1, x2 ∈ Z2,2rZ1,2 (case (2)),
then the lemma shows that s will be detected by the second for–loop of Algorithm 3. This
completes the proof when s has two distinct fixed points.

Case 2: One fixed point. Assume that s ∈ PGL2(F ) has a unique fixed point x. Then F
is a field of characteristic p > 0 and s has order p. (Move the unique fixed point to infinity.
Then s is a nontrivial translation with finite order.) The proof of Proposition 2.4 shows that
p = ord(s)|d(d− 1). Now

s(φ(x)) = φ(s(x)) = φ(x), so that φ(x) = x.

In addition, the group generated by s permutes the fixed points of φ, so that Fix(φ) r {x}
breaks up into disjoint orbits of size p. It follows that # Fix(φ) ≡ 1 (mod p). A similar
argument shows that the group generated by s acts on the set φ−1(Fix(φ)). As x lies in this
set, it must also have cardinality congruent to 1 (mod p). This justifies the early termination
criterion in the middle of Algorithm 3.

Let F ′ = F (x). As x is the unique solution of the fixed point equation for s, we have F ′ = F
or char(F ) = 2 and F ′ is a quadratic inseparable extensions of F . Select u ∈ PGL2(F

′) such
that u(x) =∞. Then

usu−1 =

(
1 λ
0 1

)
, where λ ∈ F ′.

If # Fix(φ) > 1, let y1 ∈ Fix(φ) r {x}, and set y2 := s(y1). Then u(y2) − u(y1) = λ. It
follows that

s(z) = u−1
(

1 λ
0 1

)
u(z) = u−1 (u(z) + λ) .

Thus, the third for-loop of Algorithm 3 finds s. Note that, in order to determine if s is
defined over the field F , we can use the descent technique described in §4.2.3.

If instead # Fix(φ) = 1, then we may use the same argument as in the previous paragraph
with y1, y2 ∈ φ−1(x) r {x}. (By arguments in §4.2.2, #φ−1(x) > 1). This completes the
proof that every s ∈ PGL2(F ) is correctly found by Algorithm 3.

6.3. Implementation Notes. In our implementation over Q, the main bottleneck in the
method of fixed points lies in computing Z1,2 and Z2,2, which requires finding the quadratic
factors of a degree d2 + 1 polynomial. Our approach is to factor this polynomial completely
and then read off the quadratic factors. It would be advantageous for the method of fixed
points to give a more direct technique for computing these factors.

Our implementation over finite fields does not suffer from this drawback as there are
efficient techniques for computing quadratic factors in this setting. See, e.g., [CZ81]. (Note
that the method of fixed points over finite fields is used as an intermediate step in the CRT
method over number fields.)
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7. Naive algorithms

Each of the three algorithms described in Sections 4–6 takes advantage of some dynamical
structure in order to compute either Conjφ,ψ(F ) or Autφ(F ). It is worth noting that at least
two algorithms could be implemented that make no use of the dynamical structure at all. In
this section, we briefly describe these two algorithms.

7.1. Gröbner bases. Buchberger’s algorithm allows one to compute the points of a zero-
dimensional scheme by constructing a Gröbner basis for its ideal of definition I with respect
to an appropriate monomial ordering [Eis95, Ch. 15]. Roughly, this is akin to performing
Gaussian elimination in a nonlinear setting. Over a fixed polynomial ring, its performance
typically degrades as the degrees of the generators of I grow. When d = deg(φ) = deg(ψ), we
saw in §3 that Conjφ,ψ is a zero-dimensional scheme, naturally defined by 2d+1 homogeneous
polynomials of degree d+ 1 in four variables, and so this method may be readily applied.

7.2. Finite fields — Exhaustive search. Writing Fq for the finite field with q elements,
one sees that PGL2(Fq) contains q(q2−1) elements. When q and d are small, it is reasonably
efficient to compute Conjφ,ψ(Fq) by exhaustive search. Indeed, verifying the identity ψ ◦ s =

s ◦ φ requires O(d2 log3 q) bit operations for a general choice of φ and ψ of degree d and an
element s ∈ PGL2(Fq). Since we expect Conjφ,ψ(Fq) is empty, this method typically requires
O(q3) such verifications to complete. When φ = ψ, so that Conjφ,ψ(Fq) = Autφ(Fq), this
approach can be accelerated by using the classification of subgroups of PGL2(Fq) [Fab12,
Thm. D] to build in early termination conditions.

8. Comparison of algorithms over Q

8.1. Overview. This table summarizes the algorithms being compared, and what they are
designed to compute.

Algorithm Abbreviation Computes

Method of invariant sets (§4) IS Conjφ,ψ(F ) for arbitrary field F

Chinese Remainder Theorem (§5) CRT Conjφ,ψ(K) for number field K

Method of fixed points (§6) FP Autφ(F ) for arbitrary field F

Gröbner Bases (§7) GB Conjφ,ψ(F ) for arbitrary field F

Since the method of fixed points can only be applied to the computation of Autφ(Q)
and not Conjφ,ψ(Q), we restrict to computing automorphisms for comparison purposes. We
implemented each of our algorithms in Sage to facilitate this comparison.

First, we present median running times for randomly generated rational functions of vary-
ing degrees and varying heights (Table 1). All of these randomly generated functions had
trivial automorphism group. We did not include the running times of the Gröbner basis
method when d > 9 since it is already apparent that this method was no longer competitive.
We also did not include the method of invariant sets in this table, as it was not at all com-
petitive with the others. For a random function of degree d, the fixed points likely generate
an Sd+1 extension of Q, which requires working over a large degree number field, causing a
dramatic slowdown in the method of invariant sets.
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Next, as an approximation of “random” rational functions with nontrivial automorphism
group, we compute the automorphism group of conjugates of zk, where the conjugating
functions were chosen randomly (Table 2). Finally, we present some hand-selected examples
with nontrivial automorphism group which demonstrate the correctness of the algorithms
(Table 3).

These examples were computed on a Macbook Pro (Apple, Inc.) running Mac OS X 10.9.1
with a 2.4 GHz Intel Core i5 processor and 16GB of RAM. The fixed point method, CRT
method, and invariant sets method were run with Sage 6.0 which was released on December
17, 2013. The Gröbner basis method was run with Magma V2.19-10.6

All running times are listed in seconds.

8.2. Performance comparisons. The relative performance of the algorithms depends on
the height and degree of the rational function in question, as well as on the existence of
nontrivial automorphisms over the desired ground field and over an algebraic closure.

8.2.1. Functions with trivial automorphism group. If the rational function in question is “ran-
dom,” then it is likely to have trivial automorphism group. In this case, our computations
indicate that the method of fixed points is preferable for functions of degree less than 10,
while the CRT method gains an advantage for functions of large degree. The Gröbner basis
method stays competitive for very small degrees (d ≈ 3), but quickly lags behind. We also
note that the height of the rational function seems to have a great effect on the Gröbner
basis method. This is in stark contrast to the fixed point and CRT methods, where there is
no discernible dependence on the height. The method of invariant sets is never competitive,
regardless of the degree; this is unsurprising as we expect it to require working over an Sd+1

extension of Q.

8.2.2. Functions with nontrivial automorphism group. In the presence of a nontrivial auto-
morphism, the performance of the CRT method becomes much more variable due in part
to the increased difficulty of finding early terminating conditions. The method of invariant
sets performs better in this case than in the previous case, mostly because a nontrivial auto-
morphism usually forces the invariant sets to break into Galois orbits of smaller cardinality,
which allows us to work over a smaller field.

Overall, the fixed point method performs the best. The method of invariant sets and,
when the degree is small the Gröbner basis method, are occasionally comparable.

6It is possible that the running time gap between our algorithms and the “naive” Gröbner basis algorithm
is partly due to this difference is programs; however, the gap is so large that we believe it cannot possibly
account for all of the difference.
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d
Height Bound

50 102 103 104 105 106

3 FP 0.003 0.003 0.003 0.003 0.003 0.003

CRT 0.02 0.02 0.01 0.02 0.02 0.02

GB 0.01 0.01 0.01 0.01 0.01 0.01

6 FP 0.008 0.008 0.009 0.009 0.009 0.01

CRT 0.009 0.02 0.04 0.02 0.03 0.02

GB 0.31 0.42 0.56 0.77 1.02 1.28

9 FP 0.03 0.03 0.03 0.03 0.03 0.03

CRT 0.04 0.04 0.04 0.04 0.04 0.04

GB 2.10 2.36 3.15 4.24 5.22 6.35

12 FP 0.10 0.11 0.11 0.11 0.11 0.12

CRT 0.06 0.07 0.07 0.06 0.07 0.07

15 FP 0.35 0.35 0.34 0.35 0.37 0.37

CRT 0.13 0.11 0.10 0.13 0.12 0.12

18 FP 0.97 0.95 0.97 0.99 0.98 1.01

CRT 0.27 0.29 0.26 0.25 0.22 0.26

21 FP 2.23 2.34 2.26 2.32 2.39 2.39

CRT 0.42 0.45 0.47 0.48 0.44 0.45

Table 1. Median running times for the three algorithms on 100 random ra-
tional functions with given degree and height bound.
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k f FP CRT IS GB Autφf (Q)

3 3z−7
5z−1 0.01 1.78 0.03 0.01 z, z+5

3z−1 ,
−19z+21
−5z+19

, 11z−29
13z−11

−3 −3z
−3z−4 0.01 2.60 0.05 0.02 z, z

2z−1 ,
−9z+9
7z+9

, −9z+9
−25z+9

6 7z+10
−3z+8

0.03 1.10 0.02 0.16 z, 101z−51
55z−101

−6 −7z−7
−3z+1

0.02 0.04 0.12 0.22 z, 7z
4z−7

9 z−8
4z−10 0.08 27.31 0.25 2.21 z, 84z−65

116z−84 ,
−21z+8
−40z+21

, −76z+63
−84z+76

−9 8z+1
−2z+9

0.06 30.14 0.93 9.05 z, 25z+63
77z−25 ,

−35z+8
18z+35

, 7z+65
−85z−7

12 −2z−10
4z+1

0.11 0.19 0.02 16.81 z, −2z−96−15z+2

−12 −3z
−5z+1

0.17 0.19 1.64 11.54 z, 5z−3
8z−5

15 z+9
−z+1

0.36 4.51 0.05 83.18 z,−z + 8, 4z+9
z−4 ,

4z−41
z−4

−15 −4z−1
8z−8 1.85 11.49 0.18 243.56 z,−z − 3

8
, −3z+1
16z+3

, −24z−17
128z+24

18 z+10
5z+10

1.45 1.66 0.04 373.77 z, 95z−99
75z−95

−18 1
3
(2z − 5) 0.63 0.95 2.65 29.8 z, −5z−7

3z+5

Table 2. Running times on φf where φ(z) = zk. Automorphism groups are
either Z/2 or Z/2× Z/2.
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φ FP CRT IS GB Autφ(Q) group

z2−2z−2
−2z2−2z+1

0.03 0.32 0.03 0.02 z±1,
(
−z
z+1

)±1
, (−z − 1)±1 D6

z2+2z
−2z−1 0.01 0.04 0.01 0.02 z±1,

(
−z
z+1

)±1
, (−z − 1)±1 D6

z2−4z−3
−3z2−2z+2

0.01 0.02 0.09 0.01 z, −z−1z , −1z+1 C3

z5+5z4−20z3+10z2+5z−2
2z5−5z4−10z3+20z2−5z−1 0.02 0.18 0.08 0.08

z,−z + 1, 1z ,
z
z−1 ,

2z−1
z−2 ,

−z+2
z+1 , D12

z+1
2z−1 ,

z−2
2z−1 ,

−1
z−1 ,

z−1
z , −z−1z−2 ,

2z−1
z+1

z5−5z4+10z2−5z
−5z4+10z3−5z+1

0.02 0.70 0.12 0.07
z, z

z−1 ,−z + 1, 1z ,
2z−1
z−2 ,

−z+2
z+1 , D12

z−2
2z−1 ,

z+1
2z−1 ,

−1
z−1 ,

z−1
z , −z−1z−2 ,

2z−1
z+1

z5−20z4+30z3+10z2−20z+3
−3z5−5z4+40z3−30z2−5z+4

0.01 0.17 4.06 0.12 z, z−22z−1 ,
−1
z−1 ,

z−1
z , −z−1z−2 ,

2z−1
z+1 C6

3z2−1
z3−3z 0.02 0.06 0.07 0.02 ±z,±1

z ,±
(
−z+1
z+1

)
,±
(
z+1
z−1

)
D8

z3−3z
−3z2+1

0.01 0.05 0.02 0.02 ±z,±1
z ,±

(
−z+1
z+1

)
,±
(
z+1
z−1

)
D8

z3−21z2−3z+7
−7z3−3z2+21z+1

0.01 0.15 0.38 0.02 z, −1z ,
z−1
z+1 ,

−z−1
z−1 C4

z11+66z6−11z
−11z10−66z5+1

0.02 0.09 0.09 0.30 z,−1/z C2

345025251z6 0.01 122.05 0.01 0.06 z, 1/(2601z) C2

Table 3. Running times on rational functions with nontrivial automorphism
group.
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