A FAMILY OF VARIETIES WITH EXACTLY ONE POINTLESS
RATIONAL FIBER

BIANCA VIRAY

ABSTRACT. We construct a concrete example of a 1-parameter family of smooth projective
geometrically integral varieties over an open subscheme of I% such that there is exactly one
rational fiber with no rational points. This makes explicit a construction of Poonen.

1. INTRODUCTION

We construct a family of smooth projective geometrically integral surfaces over an open
subscheme of I% with the following curious arithmetic property: there is exactly one Q-fiber
with no rational points. Our proof makes explicit a non-effective construction of Poonen [6,
Prop. 7.2], thus giving “an extreme example of geometry not controlling arithmetic” [6, p.2].
We believe that this is the first example of its kind.

Theorem 1.1. Define Py(z) := (> —2)(3—2°) and Puo(z) := 22" 432> —1. Let m: X — Py,
be the Chatelet surface bundle over I% given by

y? 4 2% = (6u® — 02)2 Py(x) + (122}2)2 P (z),
where m is projection onto (u :v). Then 7(X(Q)) = Ag(Q).

Note that the degenerate fibers of 7 do not lie over P}(Q) so the family of smooth projective
geometrically integral surfaces mentioned above contains all Q-fibers.

The non-effectivity in [6, Prop. 7.2] stems from the use of higher genus curves and Faltings’
theorem. (This is described in more detail in [6, §9]). We circumvent the use of higher genus
curves by an appropriate choice of P (z).

2. BACKGROUND

This information can be found in [6, §3,5, and 6]. We review it here for the reader’s
convenience.

Let £ be a rank 3 vector sheaf on a k-variety B. A conic bundle C' over B is the zero locus
in P€ of a nowhere vanishing zero section s € I'(P€,Sym?(£)). A diagonal conic bundle is a
conic bundle where £ = L1 @ L5 @ L3 and s = 81 + 89 + s3,5; € ['(PE, LS?).

Now let a € k*, and let P(x) € k[z] be a separable polynomial of degree 3 or 4. Consider
the diagonal conic bundle X given by B = P1, L, = O, Ly, = O, L3 = O(2),8; = 1,5, =
—a, 83 = —w*P(z/w). This smooth conic bundle contains the affine hypersurface y? —az? =

P(x) C A? as an open subscheme. We say that X is the Chatelet surface given by
y? — az? = P(x).
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Note that since P(z) is not identically zero, X is an integral surface.

A Chatelet surface bundle over P! is a flat proper morphism V' — P! such that the generic
fiber is a Chatelet surface. We can construct them in the following way. Let P, Q € k[x, w]
be linearly independent homogeneous polynomials of degree 4 and let o € k*. Let V be
the diagonal conic bundle over P%a:b) X P%w:x) given by £, = O, Ly = O,L3 = O(1,2),5, =
1,80 = —a, 83 = —(a®*P + b*Q). By composing V — P! x P! with the projection onto the
first factor, we realize V' as a Chatelet surface bundle. We say that V' is the Chatelet surface
bundle given by

y? — az® = a’P(z) + b¥*Q(x),

where P(z) = P(z,1) and Q(x) = Q(z,1). We can also view a,b as relatively prime,
homogeneous, degree d polynomials in u,v by pulling back by a suitable degree d map
¢: P(lu:v) - P(la:b)'

3. PROOF OF THEOREM 1.1
By [5], we know that the Chatelet surface
Y+ 22 = (2?2 - 2)(3 — 2?)

violates the Hasse principle, i.e. it has Q,-rational points for all completions v, but no Q-
rational points. Thus, 7(X(Q)) € Ag(Q). Therefore, it remains to show that X(,.1), the
Chatelet surface defined by

Y2 + 22 = (6u® — 1)2Py(z) + 122 Py (),

has a rational point for all u € Q.

If Py = (6u® — 1)2Py(x) + 122°Py(z) is irreducible, then by [3], [4] we know that
X(u:1) satisfies the Hasse principle. Thus it suffices to show that P is irreducible and
Xw1)(Qy) # 0 for all u € Q and all places v of Q.

3.1. Irreducibility. We prove that for any u € Q, the polynomial P,y (x) is irreducible
in Q[z] by proving the slightly more general statement, that for all ¢t € Q

Pi(z) = (22" +32* — 1) + t*(2* — 2)(3 — 2°) = 2*(2 — ) + 2%(3 + 5t%) + (=6t — 1)

is irreducible in Q[z]. We will use the fact that if a,b,c € Q are such that b* — 4ac and ac
are not squares in Q then p(x) := ax? + bz?* + ¢ is irreducible in Q[z].

Let us first check that for all £ € Q, (3 + 5t2)° —4(2 — t2) (—=6t2 — 1) is not a square in Q.
This is equivalent to proving that the affine curve C': w? = t* + 74¢> 4+ 17 has no rational
points. The smooth projective model, C' : w? = t* + 74t%s> + 17s* in weighted projective
space P(1,1,2), has 2 rational points at infinity. Therefore C' is isomorphic to its Jacobian.
A computation in Magma shows that Jac(C)(Q) = Z/2Z [1]. Therefore, the points at infinity
are the only 2 rational points of C' and thus C has no rational points.

Now we will show that (—6t* — 1) (2 — #?) is not a square in Q for any ¢t € Q. As above,
this is equivalent to determining whether C": w? = (—6t* — 1)(2 — t?) has a rational point.
Since 6 is not a square in Q, this is equivalent to determining whether the smooth projective
model, C’, has a rational point. The curve C” is a genus 1 curve so it is either isomorphic to
its Jacobian or has no rational points. A computation in Magma shows that Jac (C") (Q) =
Z/2Z [1]. Thus #C"(Q) = 0 or 2. If (¢,w) is a rational point of C’, then (£t, £w) is also
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a rational point. Therefore, #C (Q) = 2 if and only if there is a point with ¢ =0 or w =0
and one can easily check that this is not the case.

3.2. Local Solvability.
Lemma 3.1. For any point (u : v) € IP’}@, the Chatelet surface X(u.p) has R-points and

Qp-points for every prime p.
Proof. Let a = 6u® — v? and let b = 120%. We will refer to a®Py(z) 4+ b* P () both as Pgp)
and P(u:v).
R-points: It suffices to show that given (u : v) there exists an x such that
Py = 2*(26° — a*) + 2*(3b* + 5a®) + (—6a” — b°)
is positive. If 20> — a? is positive, then any z sufficiently large will work. So assume 2b* — a?

—jé%itiﬁj) is positive. We claim P, (y/a) is positive.

Pon(Va) = a2 —a®) + a(3b* + 5a®) + (—6a® — b?)
(3b% + 5a?)*  —(3b* + Ha?)?
4(2b% — a?) 2(2b% — a?)
1

= m (4(262 _ a2)(_6a2 _ b2) . (3[)2 + 5@2)2)

is negative. Then a =

+ (=6a? — b?)

1 4 2;2 4
= 120 = a?) ( 170" — 74a°b” — a )
Since 2b? — a? is negative by assumption and —17b* — 74a%b? — a* is always negative, we have
our result.
Q,-points:

p > 5: Without loss of generality, let a and b be relatively prime integers. Let y(a:b)
denote the reduction of X,y modulo p. We claim that there exists a smooth F,-point
of Y(M) that, by Hensel’s lemma, we can lift to a Q,-point of X 4.).

Since P4 has degree at most 4 and is not identically zero modulo p, there is some
r € IF, such that P, (x) is nonzero. Now let y, z run over all values in [F,,. Then the
polynomials y?, P, (z) — 2% each take (p + 1)/2 distinct values. By the pigeonhole
principle, y* and Pq) () —2* must agree for at least one pair (y, z) € IF]% and one can
check that this pair is not (0,0). Thus, this tuple (z,y, z) gives a smooth F,-point of
Y(a:b). (The proof above that the quadratic form y? + 22 represents any element in
F, is not new. For example, it can be found in [2, Prop 5.2.1].)

p = 3: From the equations for ¢ and b, one can check that for any (u : v) € Pg, v3(b/a)
is positive. Since Q3(v/—1)/Qs is an unramified extension, it suffices to show that
given a, b as above, there exists an z such that P () has even valuation. Since
v3(b/a) is positive, v3(2b* — a?) = 2vz(a). Therefore, if z = 37", for n sufficiently
large, the valuation of P4 (x) is —4n + 2v3(a) which is even.

p = 2: From the equations for a and b, one can check that for any (u : v) € I%,
vo(b/a) is at least 2. Let x = 0 and y = a. Then we need to find a solution to
2?2 = a*(=7 + (b/a)?). Since vy(b/a) > 1, =7+ (b/a)* = 1> mod 8. By Hensel’s
lemma, we can lift this to a solution in Q.
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