A FAMILY OF VARIETIES WITH EXACTLY ONE POINTLESS RATIONAL FIBER

BIANCA VIRAY

ABSTRACT. We construct a concrete example of a 1-parameter family of smooth projective geometrically integral varieties over an open subscheme of $\mathbb{P}^1_{\mathbb{Q}}$ such that there is exactly one rational fiber with no rational points. This makes explicit a construction of Poonen.

1. Introduction

We construct a family of smooth projective geometrically integral surfaces over an open subscheme of $\mathbb{P}^1_{\mathbb{Q}}$ with the following curious arithmetic property: there is exactly one \mathbb{Q} -fiber with no rational points. Our proof makes explicit a non-effective construction of Poonen [6, Prop. 7.2], thus giving "an extreme example of geometry *not* controlling arithmetic" [6, p.2]. We believe that this is the first example of its kind.

Theorem 1.1. Define $P_0(x) := (x^2 - 2)(3 - x^2)$ and $P_{\infty}(x) := 2x^4 + 3x^2 - 1$. Let $\pi \colon X \to \mathbb{P}^1_{\mathbb{Q}}$ be the Châtelet surface bundle over $\mathbb{P}^1_{\mathbb{Q}}$ given by

$$y^{2} + z^{2} = (6u^{2} - v^{2})^{2} P_{0}(x) + (12v^{2})^{2} P_{\infty}(x),$$

where π is projection onto (u:v). Then $\pi(X(\mathbb{Q})) = \mathbb{A}^1_{\mathbb{Q}}(\mathbb{Q})$.

Note that the degenerate fibers of π do not lie over $\mathbb{P}^1(\mathbb{Q})$ so the family of smooth projective geometrically integral surfaces mentioned above contains all \mathbb{Q} -fibers.

The non-effectivity in [6, Prop. 7.2] stems from the use of higher genus curves and Faltings' theorem. (This is described in more detail in [6, §9]). We circumvent the use of higher genus curves by an appropriate choice of $P_{\infty}(x)$.

2. Background

This information can be found in [6, §3,5, and 6]. We review it here for the reader's convenience.

Let \mathcal{E} be a rank 3 vector sheaf on a k-variety B. A conic bundle C over B is the zero locus in $\mathbb{P}\mathcal{E}$ of a nowhere vanishing zero section $s \in \Gamma(\mathbb{P}\mathcal{E}, \operatorname{Sym}^2(\mathcal{E}))$. A diagonal conic bundle is a conic bundle where $\mathcal{E} = \mathcal{L}_1 \oplus \mathcal{L}_2 \oplus \mathcal{L}_3$ and $s = s_1 + s_2 + s_3, s_i \in \Gamma(\mathbb{P}\mathcal{E}, \mathcal{L}_i^{\otimes 2})$.

Now let $\alpha \in k^{\times}$, and let $P(x) \in k[x]$ be a separable polynomial of degree 3 or 4. Consider the diagonal conic bundle X given by $B = \mathbb{P}^1$, $\mathcal{L}_1 = \mathcal{O}$, $\mathcal{L}_2 = \mathcal{O}$, $\mathcal{L}_3 = \mathcal{O}(2)$, $s_1 = 1$, $s_2 = -\alpha$, $s_3 = -w^4 P(x/w)$. This smooth conic bundle contains the affine hypersurface $y^2 - \alpha z^2 = P(x) \subset \mathbb{A}^3$ as an open subscheme. We say that X is the Châtelet surface given by

$$y^2 - \alpha z^2 = P(x).$$

This research was supported by the Mentored Research Award from UC Berkeley.

Note that since P(x) is not identically zero, X is an integral surface.

A Châtelet surface bundle over \mathbb{P}^1 is a flat proper morphism $V \to \mathbb{P}^1$ such that the generic fiber is a Châtelet surface. We can construct them in the following way. Let $P, Q \in k[x, w]$ be linearly independent homogeneous polynomials of degree 4 and let $\alpha \in k^{\times}$. Let V be the diagonal conic bundle over $\mathbb{P}^1_{(a:b)} \times \mathbb{P}^1_{(w:x)}$ given by $\mathcal{L}_1 = \mathcal{O}, \mathcal{L}_2 = \mathcal{O}, \mathcal{L}_3 = \mathcal{O}(1,2), s_1 = 1, s_2 = -\alpha, s_3 = -(a^2P + b^2Q)$. By composing $V \to \mathbb{P}^1 \times \mathbb{P}^1$ with the projection onto the first factor, we realize V as a Châtelet surface bundle. We say that V is the Châtelet surface bundle given by

$$y^{2} - \alpha z^{2} = a^{2}P(x) + b^{2}Q(x),$$

where P(x) = P(x,1) and Q(x) = Q(x,1). We can also view a,b as relatively prime, homogeneous, degree d polynomials in u,v by pulling back by a suitable degree d map $\phi \colon \mathbb{P}^1_{(u:v)} \to \mathbb{P}^1_{(a:b)}$.

3. Proof of Theorem 1.1

By [5], we know that the Châtelet surface

$$y^2 + z^2 = (x^2 - 2)(3 - x^2)$$

violates the Hasse principle, i.e. it has \mathbb{Q}_v -rational points for all completions v, but no \mathbb{Q} -rational points. Thus, $\pi(X(\mathbb{Q})) \subseteq \mathbb{A}^1_{\mathbb{Q}}(\mathbb{Q})$. Therefore, it remains to show that $X_{(u:1)}$, the Châtelet surface defined by

$$y^{2} + z^{2} = (6u^{2} - 1)^{2}P_{0}(x) + 12^{2}P_{\infty}(x),$$

has a rational point for all $u \in \mathbb{Q}$.

If $P_{(u:1)} := (6u^2 - 1)^2 P_0(x) + 12^2 P_{\infty}(x)$ is irreducible, then by [3], [4] we know that $X_{(u:1)}$ satisfies the Hasse principle. Thus it suffices to show that $P_{(u:1)}$ is irreducible and $X_{(u:1)}(\mathbb{Q}_v) \neq \emptyset$ for all $u \in \mathbb{Q}$ and all places v of \mathbb{Q} .

3.1. **Irreducibility.** We prove that for any $u \in \mathbb{Q}$, the polynomial $P_{(u:1)}(x)$ is irreducible in $\mathbb{Q}[x]$ by proving the slightly more general statement, that for all $t \in \mathbb{Q}$

$$P_t(x) := (2x^4 + 3x^2 - 1) + t^2(x^2 - 2)(3 - x^2) = x^4(2 - t^2) + x^2(3 + 5t^2) + (-6t^2 - 1)$$

is irreducible in $\mathbb{Q}[x]$. We will use the fact that if $a, b, c \in \mathbb{Q}$ are such that $b^2 - 4ac$ and ac are not squares in \mathbb{Q} then $p(x) := ax^4 + bx^2 + c$ is irreducible in $\mathbb{Q}[x]$.

Let us first check that for all $t \in \mathbb{Q}$, $(3+5t^2)^2 - 4(2-t^2)(-6t^2-1)$ is not a square in \mathbb{Q} . This is equivalent to proving that the affine curve $C \colon w^2 = t^4 + 74t^2 + 17$ has no rational points. The smooth projective model, $\overline{C} \colon w^2 = t^4 + 74t^2s^2 + 17s^4$ in weighted projective space $\mathbb{P}(1,1,2)$, has 2 rational points at infinity. Therefore \overline{C} is isomorphic to its Jacobian. A computation in Magma shows that $\mathrm{Jac}(C)(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z}$ [1]. Therefore, the points at infinity are the only 2 rational points of \overline{C} and thus C has no rational points.

Now we will show that $(-6t^2-1)(2-t^2)$ is not a square in $\mathbb Q$ for any $t\in \mathbb Q$. As above, this is equivalent to determining whether $C'\colon w^2=(-6t^2-1)(2-t^2)$ has a rational point. Since 6 is not a square in $\mathbb Q$, this is equivalent to determining whether the smooth projective model, $\overline{C'}$, has a rational point. The curve $\overline{C'}$ is a genus 1 curve so it is either isomorphic to its Jacobian or has no rational points. A computation in Magma shows that $\operatorname{Jac}(C')(\mathbb Q)\cong \mathbb Z/2\mathbb Z$ [1]. Thus $\#C'(\mathbb Q)=0$ or 2. If (t,w) is a rational point of C', then $(\pm t, \pm w)$ is also

a rational point. Therefore, $\#C(\mathbb{Q}) = 2$ if and only if there is a point with t = 0 or w = 0 and one can easily check that this is not the case.

3.2. Local Solvability.

Lemma 3.1. For any point $(u : v) \in \mathbb{P}^1_{\mathbb{Q}}$, the Châtelet surface $X_{(u:v)}$ has \mathbb{R} -points and \mathbb{Q}_p -points for every prime p.

Proof. Let $a = 6u^2 - v^2$ and let $b = 12v^2$. We will refer to $a^2P_0(x) + b^2P_\infty(x)$ both as $P_{(a:b)}$ and $P_{(u:v)}$.

 \mathbb{R} -points: It suffices to show that given (u:v) there exists an x such that

$$P_{(a:b)} = x^4(2b^2 - a^2) + x^2(3b^2 + 5a^2) + (-6a^2 - b^2)$$

is positive. If $2b^2-a^2$ is positive, then any x sufficiently large will work. So assume $2b^2-a^2$ is negative. Then $\alpha=\frac{-(3b^2+5a^2)}{2(2b^2-a^2)}$ is positive. We claim $P_{(a:b)}(\sqrt{\alpha})$ is positive.

$$P_{(a:b)}(\sqrt{\alpha}) = \alpha^{2}(2b^{2} - a^{2}) + \alpha(3b^{2} + 5a^{2}) + (-6a^{2} - b^{2})$$

$$= \frac{(3b^{2} + 5a^{2})^{2}}{4(2b^{2} - a^{2})} + \frac{-(3b^{2} + 5a^{2})^{2}}{2(2b^{2} - a^{2})} + (-6a^{2} - b^{2})$$

$$= \frac{1}{4(2b^{2} - a^{2})} \left(4(2b^{2} - a^{2})(-6a^{2} - b^{2}) - (3b^{2} + 5a^{2})^{2}\right)$$

$$= \frac{1}{4(2b^{2} - a^{2})} \left(-17b^{4} - 74a^{2}b^{2} - a^{4}\right)$$

Since $2b^2 - a^2$ is negative by assumption and $-17b^4 - 74a^2b^2 - a^4$ is always negative, we have our result.

 \mathbb{Q}_p -points:

 $p \geq 5$: Without loss of generality, let a and b be relatively prime integers. Let $\overline{X}_{(a:b)}$ denote the reduction of $X_{(a:b)}$ modulo p. We claim that there exists a smooth \mathbb{F}_p -point of $\overline{X}_{(a:b)}$ that, by Hensel's lemma, we can lift to a \mathbb{Q}_p -point of $X_{(a:b)}$.

Since $P_{(a:b)}$ has degree at most 4 and is not identically zero modulo p, there is some $x \in \mathbb{F}_p$ such that $P_{(a:b)}(x)$ is nonzero. Now let y, z run over all values in \mathbb{F}_p . Then the polynomials $y^2, P_{(a:b)}(x) - z^2$ each take (p+1)/2 distinct values. By the pigeonhole principle, y^2 and $P_{(a:b)}(x) - z^2$ must agree for at least one pair $(y, z) \in \mathbb{F}_p^2$ and one can check that this pair is not (0,0). Thus, this tuple (x,y,z) gives a smooth \mathbb{F}_p -point of $\overline{X}_{(a:b)}$. (The proof above that the quadratic form $y^2 + z^2$ represents any element in F_p is not new. For example, it can be found in [2, Prop 5.2.1].)

- p=3: From the equations for a and b, one can check that for any $(u:v) \in \mathbb{P}^1_{\mathbb{Q}}$, $v_3(b/a)$ is positive. Since $\mathbb{Q}_3(\sqrt{-1})/\mathbb{Q}_3$ is an unramified extension, it suffices to show that given a,b as above, there exists an x such that $P_{(a:b)}(x)$ has even valuation. Since $v_3(b/a)$ is positive, $v_3(2b^2-a^2)=2v_3(a)$. Therefore, if $x=3^{-n}$, for n sufficiently large, the valuation of $P_{(a:b)}(x)$ is $-4n+2v_3(a)$ which is even.
- p=2: From the equations for a and b, one can check that for any $(u:v) \in \mathbb{P}^1_{\mathbb{Q}}$, $v_2(b/a)$ is at least 2. Let x=0 and y=a. Then we need to find a solution to $z^2=a^2(-7+(b/a)^2)$. Since $v_2(b/a)>1$, $-7+(b/a)^2\equiv 1^2\mod 8$. By Hensel's lemma, we can lift this to a solution in \mathbb{Q}_2 .

ACKNOWLEDGEMENTS

I thank my advisor, Bjorn Poonen, for suggesting the problem and many helpful conversations. I thank the referee for suggesting the pigeonhole principle argument in Lemma 3.1. I also thank Daniel Erman and the referee for comments improving the exposition.

References

- [1] WIEB BOSMA, JOHN CANNON, CATHERINE PLAYOUST, The Magma algebra system. I. The user lanquage. J. Symbolic Comput. 24 (1997), 235–265.
- [2] Henri Cohen Number theory. Vol. I. Tools and Diophantine equations Springer, 2007.
- [3] JEAN-LOUIS COLLIOT-THÉLÈNE, JEAN-JACQUES SANSUC, PETER SWINNERTON-DYER Intersections of two quadrics and Châtelet surfaces. I. J. Reine Angew. Math. 373 (1987), 37–107.
- [4] JEAN-LOUIS COLLIOT-THÉLÈNE, JEAN-JACQUES SANSUC, PETER SWINNERTON-DYER Intersections of two quadrics and Châtelet surfaces. II. J. Reine Angew. Math. 374 (1987), 72–168.
- [5] V.A. ISKOVSKIH A counterexample to the Hasse principle for systems of two quadratic forms in five variables Mat. Zametki 10 (1971), 253–257
- [6] BJORN POONEN Existence of rational points on smooth projective varieties J. Eur. Math. Soc. (JEMS) 3 529–543

BIANCA VIRAY, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-3840. USA

E-mail address: bviray@math.berkeley.edu URL: http://math.berkeley.edu/~bviray