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Main characters: Two convex cones P and ⌃

Let f 2 R[X1, . . . ,Xn] be a multivariate polynomial with real
coe�cients.

Definition.

The polynomial f is nonnegative ( f 2 P) if f (↵) � 0 for every
↵ 2 Rn.

Definition.

The polynomial f is a sum-of-squares (f 2 ⌃) if there exist an
integer t > 0 and polynomials g1, . . . , gt 2 R[X1, . . . ,Xn] such that

f = g2
1 + · · ·+ g2

t .



Nonnegative polynomials (P)

The cone of nonnegative polynomials is important because it
allows us formulate global optimization problems:

↵⇤ := inf
↵2Rn

f (↵)

↵⇤ = sup{� 2 R : (f ,�) satisfies f (x)� � 2 P}

This can be re-written as a linear optimization problem over some
a�ne slice of the cone of nonnegative polynomials.

Such reformulations have many applications (see for instance J.B.
Lasserre’s ”Moments, positive polynomials and their applications”)
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Sums-of-squares (⌃)

Sums of squares provide certificates of nonnegativity:

Example:

Is the following polynomial f nonnegative in R2?
f = 10x6�4x5y+2x4y2+50x4�14x3y�4x3+4x2y+65x2�14x+2

Remark.

A polynomial f is a sum-of-squares of elements of V if and only if
there exists a symmetric matrix A 2 Re⇥e such that

A ⌫ 0 and f = ~mtA ~m

where ~m = (h1, . . . , he)t is a vector whose entries are a basis for V .

Constructing SOS certificates reduces to semidefinite programming
feasibility.
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For which degrees 2d and number of variables n is every
nonnegative form (homogeneous polynomial) of degree 2d a
sum-of-squares?
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Theorem. (Hilbert 1888)

Every nonnegative form of degree 2d in in n-variables is a
sum-of-squares if and only if either,

1 n = 2 (bivariate forms) or

2 d = 1 (quadratic forms) or

3 n = 3 and d = 2 (ternary quartics).

Question.

Can we find a natural context where we can understand and
hopefully generalize Hilbert’s Theorem?
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Real projective varieties

Let X ✓ Pn be a real projective variety (reduced, not necessarily
irreducible) and let S := R[X0, . . . ,Xn]/I (X ) be its homogeneous
coordinate ring.

Definition.

The cone of nonnegative quadratic forms PX is given by

PX = {f 2 S2 : 8↵ 2 X (R) (f (↵) � 0)}

Definition.

The cone of sums-of-squares of linear forms

⌃X =
n

f 2 S2 : 9s1, . . . , st 2 S1 : f =
X

s2i

o



Question.

For which projective varieties does it happen that PX = ⌃X ?

In principle, restricting only to quadratic forms seems to be fairly
restrictive. However, this is not the case since we are considering
arbitrary varieties so quadratic forms in ⌫d(X ) correspond to
2d-forms on X .
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A partial answer: irreducible varieties.

Let X ✓ Pn be a real projective variety. Assume:

1 X is non-degenerate and totally real.

2 X is irreducible.

Theorem. (Blekherman, Smith, - , 2016)

The equality PX = ⌃X occurs if and only X is a variety of minimal
degree (i.e. if the equality deg(X ) = 1 + codim(X) holds).



Varieties of minimal degree

If X ✓ Pn is a positive-dimensional, irreducible and non-degenerate
variety then its general hyperplane section is non-degenerate. It
follows that

deg(X ) � codim(X) + 1

With equality if and only if the intersection of X with a general
Pcodim(X) is a basis for this space.

Theorem. (Del Pezzo, Bertini, 1880)

Let X ✓ Pn be irreducible and not contained in any hyperplane in
Pn. If X is of minimal degree (i.e. deg(X ) = codim(X) + 1) then
either:

1 X = Pn or

2 X is a quadric hypersurface or

3 X is a cone over the Veronese surface ⌫2(P2) ⇢ P5 or

4 X is a rational normal scroll.
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Idea of Proof:

1 PX = ⌃X is preserved under projections away from real
points,

1 Project away from codim(X)� 1 points and reach the
hypersurface case.

2 For hypersurfaces PX = ⌃X i↵ X is a quadric hypersurface.
2 PX 6= ⌃X is preserved under generic hyperplane sections (By

our Bertini-type theorem for separators convex geometry +
complex geometry).

1 Slice X with a complementary subspace to obtain a set of
points with PX 6= ⌃X .

2 For a set of points X equality holds i↵ X is a linearly
independent set.
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Consequences

We could unify and generalize results scattered in the literature:

1 X = ⌫d(Pn) is minimal degree if and only if... (Hilbert’s
Theorem 1888).

2 X = V (Q)... (Yakubovich’s Theorem 1971)

3 X = �d1,d2(Pn1 ⇥ Pn2) is minimal degree if and only if...
(Choi-Lam-Reznick 1980)

4 New SOS results on nonnegative polynomials with special
support from rational normal scrolls (2016).



Vignette 1: How about denominators?

In 1927 Artin showed (solving Hilbert 17th) that every nonnegative
polynomial admits a representation as a sum-of-squares of rational
functions (and in particular as a ratio of sums of-squares).

Given f 2 P find g 2 ⌃ : fg 2 ⌃.

Question.

Do such representations exist on varieties?

Theorem. (Blekherman, Smith, -, 2019)

Let X ✓ Pn be a totally real, non-degenerate curve of degree d
and arithmetic genus pa. If f 2 PX ,2j and k � 2pa

d then there exists
g 2 ⌃X ,2k such that fg 2 ⌃X ,2(j+k). These bounds are sharp.



Vignette 2: E�ciency of representations

In 1984 Pfister showed that every nonnegative form in Rn has a
rational SOS representation involving at most 2n squares.

Definition.

The pythagoras number ⇧(X ) of a projective variety X ✓ Pn is
the smallest number of squares that su�ces to write ANY element
of ⌃X .

Theorem. (Blekherman, Smith, Sinn, -, 2020)

If X is totally real, irreducible, non-degenerate and arithmetically
Cohen-Macaulay then the following conditions are equivalent:

1 ⇧(X ) = 2 + dim(X ) (next-to-minimal)

2
deg(X ) = 2 + codim(X ) or X is codimension one in a variety
of minimal degree.
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