Some vignettes on sums-of-squares on varieties.

Greg Blekherman (Georgia Tech, USA)
Rainer Sinn (Freie Universitat Berlin, Germany)
Gregory G. Smith (Queen's University, Canada)
Mauricio Velasco* (Universidad de los Andes, Colombia)

Western Algebraic Geometry symposium ONline (WAGON) April 18, 2020

Main characters: Two convex cones P and Σ

Let $f \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ be a multivariate polynomial with real coefficients.

Definition.

The polynomial f is nonnegative $(f \in P)$ if $f(\alpha) \geq 0$ for every $\alpha \in \mathbb{R}^{n}$.

Definition.

The polynomial f is a sum-of-squares $(f \in \Sigma)$ if there exist an integer $t>0$ and polynomials $g_{1}, \ldots, g_{t} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ such that

$$
f=g_{1}^{2}+\cdots+g_{t}^{2} .
$$

Nonnegative polynomials (P)

The cone of nonnegative polynomials is important because it allows us formulate global optimization problems:

$$
\alpha^{*}:=\inf _{\alpha \in \mathbb{R}^{n}} f(\alpha)
$$

Nonnegative polynomials (P)

The cone of nonnegative polynomials is important because it allows us formulate global optimization problems:

$$
\alpha^{*}:=\inf _{\alpha \in \mathbb{R}^{n}} f(\alpha)
$$

$$
\alpha^{*}=\sup \{\lambda \in \mathbb{R}:(f, \lambda) \text { satisfies } f(x)-\lambda \in P\}
$$

Nonnegative polynomials (P)

The cone of nonnegative polynomials is important because it allows us formulate global optimization problems:

$$
\alpha^{*}:=\inf _{\alpha \in \mathbb{R}^{n}} f(\alpha)
$$

$$
\alpha^{*}=\sup \{\lambda \in \mathbb{R}:(f, \lambda) \text { satisfies } f(x)-\lambda \in P\}
$$

This can be re-written as a linear optimization problem over some affine slice of the cone of nonnegative polynomials.

Nonnegative polynomials (P)

The cone of nonnegative polynomials is important because it allows us formulate global optimization problems:

$$
\alpha^{*}:=\inf _{\alpha \in \mathbb{R}^{n}} f(\alpha)
$$

$$
\alpha^{*}=\sup \{\lambda \in \mathbb{R}:(f, \lambda) \text { satisfies } f(x)-\lambda \in P\}
$$

This can be re-written as a linear optimization problem over some affine slice of the cone of nonnegative polynomials.

Such reformulations have many applications (see for instance J.B. Lasserre's "Moments, positive polynomials and their applications")

Sums-of-squares (Σ)

Sums of squares provide certificates of nonnegativity:

Example:

Is the following polynomial f nonnegative in \mathbb{R}^{2} ?
$f=10 x^{6}-4 x^{5} y+2 x^{4} y^{2}+50 x^{4}-14 x^{3} y-4 x^{3}+4 x^{2} y+65 x^{2}-14 x+2$

Sums-of-squares (Σ)

Sums of squares provide certificates of nonnegativity:

Example:

Is the following polynomial f nonnegative in \mathbb{R}^{2} ?
$f=\left(1+x+x^{3}+x^{2} y\right)^{2}+\left(1-8 x-3 x^{3}+x^{2} y\right)^{2}$.

Sums-of-squares (Σ)

Sums of squares provide certificates of nonnegativity:

Example:

Is the following polynomial f nonnegative in \mathbb{R}^{2} ?
$f=10 x^{6}-4 x^{5} y+2 x^{4} y^{2}+50 x^{4}-14 x^{3} y-4 x^{3}+4 x^{2} y+65 x^{2}-14 x+2$

Remark.

A polynomial f is a sum-of-squares of elements of V if and only if there exists a symmetric matrix $A \in \mathbb{R}^{e \times e}$ such that

$$
A \succeq 0 \quad \text { and } \quad f=\vec{m}^{t} A \vec{m}
$$

where $\vec{m}=\left(h_{1}, \ldots, h_{e}\right)^{t}$ is a vector whose entries are a basis for V.

Sums-of-squares (Σ)

Sums of squares provide certificates of nonnegativity:

Example:

Is the following polynomial f nonnegative in \mathbb{R}^{2} ?
$f=10 x^{6}-4 x^{5} y+2 x^{4} y^{2}+50 x^{4}-14 x^{3} y-4 x^{3}+4 x^{2} y+65 x^{2}-14 x+2$

Remark.

A polynomial f is a sum-of-squares of elements of V if and only if there exists a symmetric matrix $A \in \mathbb{R}^{e \times e}$ such that

$$
A \succeq 0 \quad \text { and } \quad f=\vec{m}^{t} A \vec{m}
$$

where $\vec{m}=\left(h_{1}, \ldots, h_{e}\right)^{t}$ is a vector whose entries are a basis for V.

Constructing SOS certificates reduces to semidefinite programming feasibility.

Question

Question.
Is every nonegative polynomial a sum of squares?

Question

Question.

Is every nonegative polynomial a sum of squares?

Question.

For which degrees $2 d$ and number of variables n is every nonnegative form (homogeneous polynomial) of degree $2 d$ a sum-of-squares?

Theorem. (Hilbert 1888)

Every nonnegative form of degree $2 d$ in in n-variables is a sum-of-squares if and only if either,
(1) $n=2$ (bivariate forms) or
(2) $d=1$ (quadratic forms) or
(3) $n=3$ and $d=2$ (ternary quartics).

Theorem. (Hilbert 1888)

Every nonnegative form of degree $2 d$ in in n-variables is a sum-of-squares if and only if either,
(1) $n=2$ (bivariate forms) or
(2) $d=1$ (quadratic forms) or
(3) $n=3$ and $d=2$ (ternary quartics).

Question.

Can we find a natural context where we can understand and hopefully generalize Hilbert's Theorem?

Real projective varieties

Let $X \subseteq \mathbb{P}^{n}$ be a real projective variety (reduced, not necessarily irreducible) and let $S:=\mathbb{R}\left[X_{0}, \ldots, X_{n}\right] / I(X)$ be its homogeneous coordinate ring.

Definition.

The cone of nonnegative quadratic forms P_{X} is given by

$$
P_{X}=\left\{f \in S_{2}: \forall \alpha \in X(\mathbb{R})(f(\alpha) \geq 0)\right\}
$$

Definition.

The cone of sums-of-squares of linear forms

$$
\Sigma_{X}=\left\{f \in S_{2}: \exists s_{1}, \ldots, s_{t} \in S_{1}: f=\sum s_{i}^{2}\right\}
$$

Question.
For which projective varieties does it happen that $P_{X}=\Sigma_{X}$?

Question.

For which projective varieties does it happen that $P_{X}=\Sigma_{X}$?

In principle, restricting only to quadratic forms seems to be fairly restrictive. However, this is not the case since we are considering arbitrary varieties so quadratic forms in $\nu_{d}(X)$ correspond to $2 d$-forms on X.

A partial answer: irreducible varieties.

Let $X \subseteq \mathbb{P}^{n}$ be a real projective variety. Assume:
(1) X is non-degenerate and totally real.
(2) X is irreducible.

Theorem. (Blekherman, Smith, - , 2016)

The equality $P_{X}=\Sigma_{X}$ occurs if and only X is a variety of minimal degree (i.e. if the equality $\operatorname{deg}(X)=1+\operatorname{codim}(\mathrm{X})$ holds).

Varieties of minimal degree

If $X \subseteq \mathbb{P}^{n}$ is a positive-dimensional, irreducible and non-degenerate variety then its general hyperplane section is non-degenerate. It follows that

$$
\operatorname{deg}(X) \geq \operatorname{codim}(X)+1
$$

Varieties of minimal degree

If $X \subseteq \mathbb{P}^{n}$ is a positive-dimensional, irreducible and non-degenerate variety then its general hyperplane section is non-degenerate. It follows that

$$
\operatorname{deg}(X) \geq \operatorname{codim}(X)+1
$$

With equality if and only if the intersection of X with a general $\mathbb{P}^{\text {codim }(\mathrm{X})}$ is a basis for this space.

Varieties of minimal degree

If $X \subseteq \mathbb{P}^{n}$ is a positive-dimensional, irreducible and non-degenerate variety then its general hyperplane section is non-degenerate. It follows that

$$
\operatorname{deg}(X) \geq \operatorname{codim}(X)+1
$$

With equality if and only if the intersection of X with a general $P^{\text {codim(} \mathrm{X})}$ is a basis for this space.

Theorem. (Del Pezzo, Bertini, 1880)

Let $X \subseteq \mathbb{P}^{n}$ be irreducible and not contained in any hyperplane in \mathbb{P}^{n}. If X is of minimal degree (i.e. $\operatorname{deg}(X)=\operatorname{codim}(X)+1$) then either:
(1) $X=\mathbb{P}^{n}$ or
(2) X is a quadric hypersurface or
(3) X is a cone over the Veronese surface $\nu_{2}\left(\mathbb{P}^{2}\right) \subset \mathbb{P}^{5}$ or
(4) X is a rational normal scroll.

Idea of Proof:

Idea of Proof:

(1) $P_{X}=\Sigma_{X}$ is preserved under projections away from real points,
(1) Project away from $\operatorname{codim}(\mathrm{X})-1$ points and reach the hypersurface case.
(2) For hypersurfaces $P_{X}=\Sigma_{X}$ iff X is a quadric hypersurface.

Idea of Proof:

(1) $P_{X}=\Sigma_{X}$ is preserved under projections away from real points,
(1) Project away from $\operatorname{codim}(\mathrm{X})-1$ points and reach the hypersurface case.
(2) For hypersurfaces $P_{X}=\Sigma_{X}$ iff X is a quadric hypersurface.
(2) $P_{X} \neq \Sigma_{X}$ is preserved under generic hyperplane sections (By our Bertini-type theorem for separators convex geometry + complex geometry).
(1) Slice X with a complementary subspace to obtain a set of points with $P_{X} \neq \Sigma_{X}$.
(2) For a set of points X equality holds iff X is a linearly independent set.

Consequences

We could unify and generalize results scattered in the literature:
(1) $X=\nu_{d}\left(\mathbb{P}^{n}\right)$ is minimal degree if and only if... (Hilbert's Theorem 1888).
(2) $X=V(Q) \ldots$ (Yakubovich's Theorem 1971)
(3) $X=\sigma_{d_{1}, d_{2}}\left(\mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{2}}\right)$ is minimal degree if and only if... (Choi-Lam-Reznick 1980)
(4) New SOS results on nonnegative polynomials with special support from rational normal scrolls (2016).

Vignette 1: How about denominators?

In 1927 Artin showed (solving Hilbert 17th) that every nonnegative polynomial admits a representation as a sum-of-squares of rational functions (and in particular as a ratio of sums of-squares).

Given $f \in P$ find $g \in \Sigma: f g \in \Sigma$.

Question.

Do such representations exist on varieties?

Theorem. (Blekherman, Smith, -, 2019)

Let $X \subseteq \mathbb{P}^{n}$ be a totally real, non-degenerate curve of degree d and arithmetic genus p_{a}. If $f \in P_{X, 2 j}$ and $k \geq \frac{2 p_{a}}{d}$ then there exists $g \in \Sigma_{X, 2 k}$ such that $f g \in \Sigma_{X, 2(j+k)}$. These bounds are sharp.

Vignette 2: Efficiency of representations

In 1984 Pfister showed that every nonnegative form in \mathbb{R}^{n} has a rational SOS representation involving at most 2^{n} squares.

Definition.

The pythagoras number $\Pi(X)$ of a projective variety $X \subseteq \mathbb{P}^{n}$ is the smallest number of squares that suffices to write ANY element of Σ_{X}.

Theorem. (Blekherman, Smith, Sinn, -, 2020)
If X is totally real, irreducible, non-degenerate and arithmetically Cohen-Macaulay then the following conditions are equivalent:
(1) $\Pi(X)=2+\operatorname{dim}(X)$ (next-to-minimal)
(2) $\operatorname{deg}(X)=2+\operatorname{codim}(X)$ or X is codimension one in a variety of minimal degree.

References

- Algebraic geometry and sums-of-squares, M.Velasco, Chapter on the AMS Book on Sums-of-squares. To appear in Proceedings of Symposia in Applied Mathematics, AMS.
- Sums of Squares and Varieties of Minimal Degree, G. Blekherman, G. Smith, M. Velasco, Journal of the AMS, 29, 893-913, (2016).
- Do Sums of Squares Dream of Free Resolutions?, G. Blekherman, R. Sinn, M. Velasco, SIAM Journal on Applied Algebra and Geometry (2017).
- Sharp degree bounds for sum-of-squares certificates on projective curves, G. Blekherman, G. Smith, M. Velasco Journal de Mathematiques Pures et Appliquees (JMPA).
- Sums of Squares and Quadratic Persistence on Real Projective Varieties, G. Blekherman, R. Sinn, G. Smith, M. Velasco, to appear in JEMS.

