Valentijn Karemaker (Utrecht University & Stockholm University)

Joint work with F. Yobuko and C.-F. Yu

WAGON

April 19, 2020

What is a mass (formula)?

Definition

Let S be a finite set of objects with finite automorphism groups. The MASS of S is the weighted sum

$$\operatorname{Mass}(S) = \sum_{s \in S} \frac{1}{|\operatorname{Aut}(s)|}.$$

A mass formula computes an expression for the mass.

What mass formula are we looking for?

Let k be an algebraically closed field of characteristic p. Let A/k be a three-dimensional abelian variety. A/k is SUPERSINGULAR (resp. SUPERSPECIAL) if it is *isogenous* (resp. *isomorphic*) to a product of supersingular elliptic curves. Let $S_{3,1}$ be the moduli space of principally polarised supersingular abelian threefolds (X, λ) .

What mass formula are we looking for?

Let k be an algebraically closed field of characteristic p. Let A/k be a three-dimensional abelian variety. A/k is SUPERSINGULAR (resp. SUPERSPECIAL) if it is *isogenous* (resp. *isomorphic*) to a product of supersingular elliptic curves. Let $S_{3,1}$ be the moduli space of principally polarised supersingular abelian threefolds (X, λ) .

Definition

For $x = (X_0, \lambda_0) \in \mathcal{S}_{3,1}(k)$, let

$$\Lambda_{\mathsf{x}} = \{(X,\lambda) \in \mathcal{S}_{3,1}(k) : (X,\lambda)[p^{\infty}] \simeq (X_0,\lambda_0)[p^{\infty}]\}.$$

It is known that Λ_x is finite.

What mass formula are we looking for?

Let k be an algebraically closed field of characteristic p. Let A/k be a three-dimensional abelian variety. A/k is SUPERSINGULAR (resp. SUPERSPECIAL) if it is *isogenous* (resp. *isomorphic*) to a product of supersingular elliptic curves. Let $S_{3,1}$ be the moduli space of principally polarised supersingular abelian threefolds (X, λ) .

Definition

For
$$x = (X_0, \lambda_0) \in \mathcal{S}_{3,1}(k)$$
, let

$$\Lambda_{x} = \{(X,\lambda) \in \mathcal{S}_{3,1}(k) : (X,\lambda)[p^{\infty}] \simeq (X_{0},\lambda_{0})[p^{\infty}]\}.$$

It is known that Λ_x is finite.

Goal

Compute
$$Mass(\Lambda_x) = \sum_{x' \in \Lambda_x} |Aut(x')|^{-1}$$
 for any $x \in \mathcal{S}_{3,1}$.

How do we describe $S_{3,1}$?

Let E/\mathbb{F}_{p^2} be a supersingular elliptic curve with $\pi_E = -p$. Let μ be any principal polarisation of E^3 .

Definition

A polarised flag type quotient (PFTQ) with respect to μ is a chain

$$(E^3, p\mu) =: (Y_2, \lambda_2) \xrightarrow{\rho_2} (Y_1, \lambda_1) \xrightarrow{\rho_1} (Y_0, \lambda_0)$$

such that ker(ρ_1) $\simeq \alpha_p$, ker(ρ_2) $\simeq \alpha_p^2$, and ker(λ_i) \subseteq ker($V^j \circ F^{i-j}$) for $0 \le i \le 2$ and $0 \le j \le \lfloor i/2 \rfloor$. Let \mathcal{P}_{μ} be the moduli space of PFTQ's.

How do we describe $S_{3,1}$?

Let E/\mathbb{F}_{p^2} be a supersingular elliptic curve with $\pi_E = -p$. Let μ be any principal polarisation of E^3 .

Definition

A polarised flag type quotient (PFTQ) with respect to μ is a chain

$$(E^3, p\mu) =: (Y_2, \lambda_2) \xrightarrow{\rho_2} (Y_1, \lambda_1) \xrightarrow{\rho_1} (Y_0, \lambda_0)$$

such that $\ker(\rho_1) \simeq \alpha_p$, $\ker(\rho_2) \simeq \alpha_p^2$, and $\ker(\lambda_i) \subseteq \ker(V^j \circ F^{i-j})$ for $0 \le i \le 2$ and $0 \le j \le \lfloor i/2 \rfloor$. Let \mathcal{P}_μ be the moduli space of PFTQ's.

It follows that $(Y_0,\lambda_0)\in\mathcal{S}_{3,1}$, so there is a projection map

$$\mathrm{pr}_{0}:\mathcal{P}_{\mu}
ightarrow\mathcal{S}_{3,1}$$

 $(Y_{2}
ightarrow Y_{1}
ightarrow Y_{0})\mapsto (Y_{0},\lambda_{0}).$

How do we describe \mathcal{P}_{μ} ?

Let
$$C: t_1^{p+1} + t_2^{p+1} + t_3^{p+1} = 0$$
 be a Fermat curve in \mathbb{P}^2 .

Then $\pi : \mathcal{P}_{\mu} \simeq \mathbb{P}_{\mathcal{C}}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \to \mathcal{C}$ is a \mathbb{P}^1 -bundle. There is a section $s : \mathcal{C} \to \mathcal{T} \subseteq \mathcal{P}_{\mu}$,

How do we describe \mathcal{P}_{μ} ?

Let
$$C: t_1^{p+1}+t_2^{p+1}+t_3^{p+1}=0$$
 be a Fermat curve in \mathbb{P}^2

Then $\pi : \mathcal{P}_{\mu} \simeq \mathbb{P}_{\mathcal{C}}(\mathcal{O}(-1) \oplus \mathcal{O}(1)) \to \mathcal{C}$ is a \mathbb{P}^1 -bundle. There is a section $s : \mathcal{C} \to \mathcal{T} \subseteq \mathcal{P}_{\mu}$,

Upshot

For each (X, λ) there exist a μ and a $y \in \mathcal{P}_{\mu}$ such that $\operatorname{pr}_{0}(y) = [(X, \lambda)].$ This y is uniquely characterised by a pair (t, u) with $t = (t_{1} : t_{2} : t_{3}) \in C(k)$ and $u = (u_{1} : u_{2}) \in \pi^{-1}(t) \simeq \mathbb{P}_{t}^{1}(k).$

The structure of \mathcal{P}_{μ}

$$\pi:\mathcal{P}_{\mu}\simeq \mathbb{P}_{\mathcal{C}}(\mathcal{O}(-1)\oplus \mathcal{O}(1))
ightarrow \mathcal{C}$$
 has section $s:\mathcal{C}
ightarrow \mathcal{T}\subseteq \mathcal{P}_{\mu}$

Definition

Let X/k be an abelian variety. Its *a*-NUMBER is

 $a(X) := \dim_k \operatorname{Hom}(\alpha_p, X).$

For a PFTQ $y = (Y_2 \rightarrow Y_1 \rightarrow Y_0)$, we say $a(y) = a(Y_0)$.

The structure of \mathcal{P}_{μ}

$$\pi:\mathcal{P}_{\mu}\simeq\mathbb{P}_{\mathcal{C}}(\mathcal{O}(-1)\oplus\mathcal{O}(1))
ightarrow \mathcal{C}$$
 has section $s:\mathcal{C}
ightarrow \mathcal{T}\subseteq\mathcal{P}_{\mu}$

Definition

Let X/k be an abelian variety. Its *a*-NUMBER is

 $a(X) := \dim_k \operatorname{Hom}(\alpha_p, X).$

For a PFTQ $y = (Y_2 \rightarrow Y_1 \rightarrow Y_0)$, we say $a(y) = a(Y_0)$.

• For a threefold X we have $a(X) \in \{1, 2, 3\}$, and $a(X) = 3 \Leftrightarrow X$ is superspecial.

The structure of \mathcal{P}_{μ}

$$\pi:\mathcal{P}_{\mu}\simeq\mathbb{P}_{\mathcal{C}}(\mathcal{O}(-1)\oplus\mathcal{O}(1))
ightarrow \mathcal{C}$$
 has section $s:\mathcal{C}
ightarrow \mathcal{T}\subseteq\mathcal{P}_{\mu}$

Definition

Let X/k be an abelian variety. Its *a*-NUMBER is

 $a(X) := \dim_k \operatorname{Hom}(\alpha_p, X).$

For a PFTQ $y = (Y_2 \rightarrow Y_1 \rightarrow Y_0)$, we say $a(y) = a(Y_0)$.

• For a threefold X we have $a(X) \in \{1, 2, 3\}$, and $a(X) = 3 \Leftrightarrow X$ is superspecial.

• If
$$y \in T$$
, then $a(y) = 3$.

The structure of \mathcal{P}_{μ}

$$\pi:\mathcal{P}_{\mu}\simeq\mathbb{P}_{\mathcal{C}}(\mathcal{O}(-1)\oplus\mathcal{O}(1))
ightarrow\mathcal{C}$$
 has section $s:\mathcal{C}
ightarrow\mathcal{T}\subseteq\mathcal{P}_{\mu}$

Definition

Let X/k be an abelian variety. Its *a*-NUMBER is

 $a(X) := \dim_k \operatorname{Hom}(\alpha_p, X).$

For a PFTQ $y = (Y_2 \rightarrow Y_1 \rightarrow Y_0)$, we say $a(y) = a(Y_0)$.

• For a threefold X we have $a(X) \in \{1, 2, 3\}$, and $a(X) = 3 \Leftrightarrow X$ is superspecial.

• If
$$y \in T$$
, then $a(y) = 3$.

• For $t \in C(k)$, we have $t \in C(\mathbb{F}_{p^2}) \Leftrightarrow a(y) \ge 2$ for any $y \in \pi^{-1}(t)$.

The structure of \mathcal{P}_{μ}

$$\pi:\mathcal{P}_{\mu}\simeq\mathbb{P}_{\mathcal{C}}(\mathcal{O}(-1)\oplus\mathcal{O}(1))
ightarrow \mathcal{C}$$
 has section $s:\mathcal{C}
ightarrow \mathcal{T}\subseteq\mathcal{P}_{\mu}$

Definition

Let X/k be an abelian variety. Its *a*-NUMBER is

 $a(X) := \dim_k \operatorname{Hom}(\alpha_p, X).$

For a PFTQ $y = (Y_2 \rightarrow Y_1 \rightarrow Y_0)$, we say $a(y) = a(Y_0)$.

• For a threefold X we have $a(X) \in \{1, 2, 3\}$, and $a(X) = 3 \Leftrightarrow X$ is superspecial.

• If
$$y \in T$$
, then $a(y) = 3$.

- For $t \in C(k)$, we have $t \in C(\mathbb{F}_{p^2}) \Leftrightarrow a(y) \ge 2$ for any $y \in \pi^{-1}(t)$.
- For $y \in \mathcal{P}_{\mu}$, we have $a(y) = 1 \Leftrightarrow y \notin T$ and $\pi(y) \notin C(\mathbb{F}_{p^2})$.

Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a MINIMAL ISOGENY

$$\varphi: Y \to X$$

from a superspecial abelian variety Y.

Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a MINIMAL ISOGENY

$$\varphi: Y \to X$$

from a *superspecial* abelian variety Y.

Idea

Construct the minimal isogeny for X from its corresponding PFTQ

$$Y_2 \xrightarrow{\rho_2} Y_1 \xrightarrow{\rho_1} Y_0 = X.$$

(If $Y_2 \rightarrow Y_1 \rightarrow Y_0$ is a PFTQ, then Y_2 is superspecial!)

Using PFTQ's to construct minimal isogenies

Any supersingular abelian variety X admits a MINIMAL ISOGENY

$$\varphi: Y \to X$$

from a *superspecial* abelian variety Y.

Idea

Construct the minimal isogeny for X from its corresponding PFTQ

$$Y_2 \xrightarrow{\rho_2} Y_1 \xrightarrow{\rho_1} Y_0 = X.$$

(If $Y_2 \rightarrow Y_1 \rightarrow Y_0$ is a PFTQ, then Y_2 is superspecial!)

- If a(X) = 3 then X is superspecial and $\varphi = id$.
- If a(X) = 2, then $a(Y_1) = 3$ and $\varphi = \rho_1$ of degree p.
- If a(X) = 1, then $\varphi = \rho_1 \circ \rho_2$ of degree p^3 .

From minimal isogenies to masses

Let $x = (X, \lambda)$ be supersingular and $\varphi : Y \to X$ a minimal isogeny. Write $\tilde{x} = (Y, \varphi^* \lambda)$.

Lemma

 $\operatorname{Mass}(\Lambda_x) = [\operatorname{Aut}((Y, \phi^*\lambda)[p^\infty]) : \operatorname{Aut}((X, \lambda)[p^\infty])] \cdot \operatorname{Mass}(\Lambda_{\tilde{x}}).$

From minimal isogenies to masses

Let $x = (X, \lambda)$ be supersingular and $\varphi : Y \to X$ a minimal isogeny. Write $\tilde{x} = (Y, \varphi^* \lambda)$.

Lemma

$$\operatorname{Mass}(\Lambda_{x}) = [\operatorname{Aut}((Y, \phi^{*}\lambda)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])] \cdot \operatorname{Mass}(\Lambda_{\tilde{x}}).$$

Moreover, the superspecial masses are known in any dimension!

Lemma [Ekedahl, Harashita, Hashimoto, Ibukiyama, Yu]

Let $\tilde{x} = (Y, \lambda)$ be a superspecial abelian threefold.

• If λ is a principal polarisation, then $Mass(\Lambda_z) = \frac{(p-1)(p^2+1)(p^3-1)}{p^{10}(p^4-1)(p^3-1)}$

$$\operatorname{ass}(\Lambda_{\widetilde{X}}) = \frac{(p-1)(p-1)(p-1)}{2^{10} \cdot 3^4 \cdot 5 \cdot 7}$$

• If ker $(\lambda) \simeq \alpha_p \times \alpha_p$, then

$$Mass(\Lambda_{\tilde{x}}) = \frac{(p-1)(p^3+1)(p^3-1)}{2^{10} \cdot 3^4 \cdot 5 \cdot 7}$$

From minimal isogenies to masses

Let $x = (X, \lambda)$ be supersingular and $\varphi : Y \to X$ a minimal isogeny. Write $\tilde{x} = (Y, \varphi^* \lambda)$.

Lemma

$$\operatorname{Mass}(\Lambda_{x}) = [\operatorname{Aut}((Y, \phi^{*}\lambda)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])] \cdot \operatorname{Mass}(\Lambda_{\tilde{x}}).$$

Moreover, the superspecial masses are known in any dimension!

Lemma [Ekedahl, Harashita, Hashimoto, Ibukiyama, Yu]

Let $\tilde{x} = (Y, \lambda)$ be a superspecial abelian threefold.

• If λ is a principal polarisation, then $\operatorname{Mass}(\Lambda_{\tilde{x}}) = \frac{(p-1)(p^2+1)(p^3-1)}{2^{10}\cdot 3^4\cdot 5\cdot 7}.$

• If ker(
$$\lambda$$
) $\simeq \alpha_p \times \alpha_p$, then

$$Mass(\Lambda_{\tilde{\chi}}) = \frac{(p-1)(p^3+1)(p^3-1)}{2^{10}\cdot 3^4\cdot 5\cdot 7}$$

It remains to compute $[Aut((Y, \phi^*\lambda)[p^{\infty}]) : Aut((X, \lambda)[p^{\infty}])].$

The case a(X) = 2

Let $x = (X, \lambda) \in S_{3,1}$ such that a(X) = 2. Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^2})$. We need to compute $[\operatorname{Aut}((Y_1, \lambda_1)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])]$. Mass formula for supersingular abelian threefolds $\circ\circ\circ\circ\circ\circ\bullet\circ\circ\circ\circ$

The case a(X) = 2

Let $x = (X, \lambda) \in S_{3,1}$ such that a(X) = 2. Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^2})$. We need to compute $[\operatorname{Aut}((Y_1, \lambda_1)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])]$.

There are reduction maps

$$\begin{array}{l} \operatorname{Aut}((Y_1,\lambda_1)[p^{\infty}]) \twoheadrightarrow \operatorname{SL}_2(\mathbb{F}_{p^2}) \\ \operatorname{Aut}((X,\lambda)[p^{\infty}]) \twoheadrightarrow \operatorname{SL}_2(\mathbb{F}_{p^2}) \cap \operatorname{End}(u)^{\times}, \end{array}$$

where

$$\operatorname{End}(u) = \{g \in M_2(\mathbb{F}_{p^2}) : g \cdot u \subseteq k \cdot u\} \simeq \begin{cases} \mathbb{F}_{p^4} \text{ if } u \in \mathbb{P}_t^1(\mathbb{F}_{p^4}) \setminus \mathbb{P}_t^1(\mathbb{F}_{p^2}); \\ \mathbb{F}_{p^2} \text{ if } u \in \mathbb{P}_t^1(k) \setminus \mathbb{P}_t^1(\mathbb{F}_{p^4}). \end{cases}$$

Mass formula for supersingular abelian threefolds $\circ\circ\circ\circ\circ\circ\bullet\circ\circ\circ\circ$

The case a(X) = 2

Let
$$x = (X, \lambda) \in S_{3,1}$$
 such that $a(X) = 2$.
Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}_t^1(k) \setminus \mathbb{P}_t^1(\mathbb{F}_{p^2})$.

So
$$[\operatorname{Aut}((Y_1, \lambda_1)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])] =$$

 $[\operatorname{SL}_2(\mathbb{F}_{p^2}) : \operatorname{SL}_2(\mathbb{F}_{p^2}) \cap \operatorname{End}(u)^{\times}] =$
 $\begin{cases} p^2(p^2 - 1) & \text{if } u \in \mathbb{P}_t^1(\mathbb{F}_{p^4}) \setminus \mathbb{P}_t^1(\mathbb{F}_{p^2}); \\ |\operatorname{PSL}_2(F_{p^2})| & \text{if } u \in \mathbb{P}_t^1(k) \setminus \mathbb{P}_t^1(\mathbb{F}_{p^4}). \end{cases}$

Mass formula for supersingular abelian threefolds $\circ\circ\circ\circ\circ\circ\bullet\circ\circ\circ$

The case a(X) = 2

Let
$$x = (X, \lambda) \in S_{3,1}$$
 such that $a(X) = 2$.
Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}_t^1(k) \setminus \mathbb{P}_t^1(\mathbb{F}_{p^2})$.

So
$$[\operatorname{Aut}((Y_1, \lambda_1)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])] =$$

 $[\operatorname{SL}_2(\mathbb{F}_{p^2}) : \operatorname{SL}_2(\mathbb{F}_{p^2}) \cap \operatorname{End}(u)^{\times}] =$
 $\begin{cases} p^2(p^2 - 1) & \text{if } u \in \mathbb{P}^1_t(\mathbb{F}_{p^4}) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^2}); \\ |\operatorname{PSL}_2(F_{p^2})| & \text{if } u \in \mathbb{P}^1_t(k) \setminus \mathbb{P}^1_t(\mathbb{F}_{p^4}). \end{cases}$

Theorem (K.-Yobuko-Yu)

$$\begin{split} \operatorname{Mass}(\Lambda_{x}) &= \frac{1}{2^{10} \cdot 3^{4} \cdot 5 \cdot 7} \cdot \\ & \begin{cases} (p-1)(p^{3}+1)(p^{3}-1)(p^{4}-p^{2}) & : u \in \mathbb{P}^{1}_{t}(\mathbb{F}_{p^{4}}) \setminus \mathbb{P}^{1}_{t}(\mathbb{F}_{p^{2}}); \\ 2^{-e(p)}(p-1)(p^{3}+1)(p^{3}-1)p^{2}(p^{4}-1) & : u \in \mathbb{P}^{1}_{t}(k) \setminus \mathbb{P}^{1}_{t}(\mathbb{F}_{p^{4}}). \end{split}$$

Mass formula for supersingular abelian threefolds $\circ\circ\circ\circ\circ\circ\circ\bullet\circ\circ\circ$

The case a(X) = 1

Let
$$x = (X, \lambda) \in S_{3,1}$$
 such that $a(X) = 1$.
Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C^0(k) := C(k) \setminus C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k)$.
We need to compute $[\operatorname{Aut}((Y_2, \lambda_2)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])]$.

The case a(X) = 1

Let
$$x = (X, \lambda) \in S_{3,1}$$
 such that $a(X) = 1$.
Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C^0(k) := C(k) \setminus C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k)$.
We need to compute $[\operatorname{Aut}((Y_2, \lambda_2)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])]$.

Let $D_p = \mathbb{Q}_{p^2}[\Pi]$ be the division quaternion algebra over \mathbb{Q}_p , and let \mathcal{O}_{D_p} its maximal order. (We have $\Pi^2 = -p$.)

•
$$G_2 := \operatorname{Aut}((Y_2, \lambda_2)[p^{\infty}]) \simeq \{A \in \operatorname{GL}_3(\mathcal{O}_{D_p}) : A^*A = \mathbb{I}_3\}.$$

•
$$G := \operatorname{Aut}((X, \lambda)[p^{\infty}])] = \{g \in G_2 : g(X[p^{\infty}]) = X[p^{\infty}]\}.$$

The case a(X) = 1

Let
$$x = (X, \lambda) \in S_{3,1}$$
 such that $a(X) = 1$.
Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair
 $t \in C^0(k) := C(k) \setminus C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k)$.
We need to compute $[\operatorname{Aut}((Y_2, \lambda_2)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])]$.

Let $D_p = \mathbb{Q}_{p^2}[\Pi]$ be the division quaternion algebra over \mathbb{Q}_p , and let \mathcal{O}_{D_p} its maximal order. (We have $\Pi^2 = -p$.)

- $G_2 := \operatorname{Aut}((Y_2, \lambda_2)[p^{\infty}]) \simeq \{A \in \operatorname{GL}_3(\mathcal{O}_{D_p}) : A^*A = \mathbb{I}_3\}.$
- $G := \operatorname{Aut}((X,\lambda)[p^{\infty}])] = \{g \in G_2 : g(X[p^{\infty}]) = X[p^{\infty}]\}.$

Reducing modulo p we obtain G_2 and G, where:

• $\overline{G}_2 = \{A + B\Pi \in \operatorname{GL}_3(\mathbb{F}_{p^2}[\Pi]) : A^*A = \mathbb{I}_3, B^TA^* = A^{*T}B\},$ so $|\overline{G}_2| = |U_3(\mathbb{F}_p)| \cdot |S_3(\mathbb{F}_{p^2})| = p^{15}(p+1)(p^2-1)(p^3+1);$

•
$$\overline{G} = \{g \in \overline{G}_2 : g(\overline{X[p^{\infty}]}) \subseteq \overline{X[p^{\infty}]}\}.$$

The case a(X) = 1

Let
$$x = (X, \lambda) \in S_{3,1}$$
 such that $a(X) = 1$.
Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C^0(k) := C(k) \setminus C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k)$.
We need to compute $[\operatorname{Aut}((Y_2, \lambda_2)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])]$.

Let $D_p = \mathbb{Q}_{p^2}[\Pi]$ be the division quaternion algebra over \mathbb{Q}_p , and let \mathcal{O}_{D_p} its maximal order. (We have $\Pi^2 = -p$.)

•
$$G_2 := \operatorname{Aut}((Y_2, \lambda_2)[p^{\infty}]) \simeq \{A \in \operatorname{GL}_3(\mathcal{O}_{D_p}) : A^*A = \mathbb{I}_3\}.$$

•
$$G := \operatorname{Aut}((X,\lambda)[p^{\infty}])] = \{g \in G_2 : g(X[p^{\infty}]) = X[p^{\infty}]\}.$$

Reducing modulo p we obtain G_2 and G, where:

•
$$\overline{G}_2 = \{A + B\Pi \in \operatorname{GL}_3(\mathbb{F}_{p^2}[\Pi]) : A^*A = \mathbb{I}_3, B^TA^* = A^{*T}B\},$$

so $|\overline{G}_2| = |U_3(\mathbb{F}_p)| \cdot |S_3(\mathbb{F}_{p^2})| = p^{15}(p+1)(p^2-1)(p^3+1);$
• $\overline{G} = \{g \in \overline{G}_2 : g(\overline{X[p^{\infty}]}) \subseteq \overline{X[p^{\infty}]}\}.$

Moreover,

•
$$[\operatorname{Aut}((Y_2,\lambda_2)[p^{\infty}]):\operatorname{Aut}((X,\lambda)[p^{\infty}])] = [G_2:G] = [\overline{G}_2:\overline{G}].$$

The case a(X) = 1

Let $x = (X, \lambda) \in S_{3,1}$ such that a(X) = 1. Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C^0(k) := C(k) \setminus C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k)$. We need $[\operatorname{Aut}((Y_2, \lambda_2)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])] = [G_2 : G] = [\overline{G}_2 : \overline{G}].$

•
$$\overline{G} \simeq \left\{ \begin{pmatrix} A & 0 \\ SA & A^{(p)} \end{pmatrix} : A \in U_3(\mathbb{F}_p), A \cdot t = \alpha \cdot t, \\ S \in S_3(\mathbb{F}_{p^2}), \psi_t(S) = u_2 u_1^{-1} (1 - \alpha^{p^3 - 1}) \right\},$$

where $\psi_t : S_3(\mathbb{F}_{p^2}) \to k$ is a homomorphism depending on t .

The case a(X) = 1

Let $x = (X, \lambda) \in S_{3,1}$ such that a(X) = 1. Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C^0(k) := C(k) \setminus C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k)$. We need $[\operatorname{Aut}((Y_2, \lambda_2)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])] = [G_2 : G] = [\overline{G}_2 : \overline{G}].$

•
$$\overline{G} \simeq \left\{ \begin{pmatrix} A & 0 \\ SA & A^{(p)} \end{pmatrix} : A \in U_3(\mathbb{F}_p), A \cdot t = \alpha \cdot t, \\ S \in S_3(\mathbb{F}_{p^2}), \psi_t(S) = u_2 u_1^{-1} (1 - \alpha^{p^3 - 1}) \right\},$$

where $\psi_t : S_3(\mathbb{F}_{p^2}) \to k$ is a homomorphism depending on t .

The images of ψ_t for varying t define a divisor $D \subseteq C^0 \times \mathbb{P}^1$. For $t \in C^0(k)$, let $d(t) = \dim_{\mathbb{F}_{p^2}}(\operatorname{Im}(\psi_t))$ and $D_t = \pi^{-1}(t) \cap D$. Then $u = (u_1 : u_2) \in D_t \Leftrightarrow u_2 u_1^{-1} \in \operatorname{Im}(\psi_t)$.

The case a(X) = 1

Let $x = (X, \lambda) \in S_{3,1}$ such that a(X) = 1. Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C^0(k) := C(k) \setminus C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k)$. We need $[\operatorname{Aut}((Y_2, \lambda_2)[p^{\infty}]) : \operatorname{Aut}((X, \lambda)[p^{\infty}])] = [G_2 : G] = [\overline{G}_2 : \overline{G}].$

•
$$\overline{G} \simeq \left\{ \begin{pmatrix} A & 0 \\ SA & A^{(p)} \end{pmatrix} : A \in U_3(\mathbb{F}_p), A \cdot t = \alpha \cdot t, \\ S \in S_3(\mathbb{F}_{p^2}), \psi_t(S) = u_2 u_1^{-1} (1 - \alpha^{p^3 - 1}) \right\},$$

where $\psi_t : S_3(\mathbb{F}_{p^2}) \to k$ is a homomorphism depending on t .

The images of ψ_t for varying t define a divisor $D \subseteq C^0 \times \mathbb{P}^1$. For $t \in C^0(k)$, let $d(t) = \dim_{\mathbb{F}_{p^2}}(\operatorname{Im}(\psi_t))$ and $D_t = \pi^{-1}(t) \cap D$. Then $u = (u_1 : u_2) \in D_t \Leftrightarrow u_2 u_1^{-1} \in \operatorname{Im}(\psi_t)$. • $|\overline{G}| = \begin{cases} 2^{e(p)} p^{2(6-d(t))} & \text{if } u \notin D_t; \\ (p+1)p^{2(6-d(t))} & \text{if } u \in D_t \text{ and } t \notin C(\mathbb{F}_{p^6}); \\ (p^3+1)p^6 & \text{if } u \in D_t \text{ and } t \in C(\mathbb{F}_{p^6}). \end{cases}$ Mass formula for supersingular abelian threefolds $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

The case a(X) = 1

Let
$$x = (X, \lambda) \in S_{3,1}$$
 such that $a(X) = 1$.
Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C^0(k) := C(k) \setminus C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k)$.

Theorem (K.-Yobuko-Yu)

$$\begin{split} \operatorname{Mass}(\Lambda_x) &= \frac{p^3}{2^{10} \cdot 3^4 \cdot 5 \cdot 7} \cdot \\ \begin{cases} 2^{-e(p)} p^{2d(t)} (p^2 - 1) (p^4 - 1) (p^6 - 1) & : u \notin D_t; \\ p^{2d(t)} (p - 1) (p^4 - 1) (p^6 - 1) & : u \in D_t, t \notin C(\mathbb{F}_{p^6}); \\ p^6 (p^2 - 1) (p^3 - 1) (p^4 - 1) & : u \in D_t, t \in C(\mathbb{F}_{p^6}). \end{cases} \end{split}$$

Mass formula for supersingular abelian threefolds $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

The case a(X) = 1

Let
$$x = (X, \lambda) \in S_{3,1}$$
 such that $a(X) = 1$.
Its PFTQ $(Y_2, \lambda_2) \rightarrow (Y_1, \lambda_1) \rightarrow (X, \lambda)$ is characterised by a pair $t \in C^0(k) := C(k) \setminus C(\mathbb{F}_{p^2})$ and $u \in \mathbb{P}^1_t(k)$.

Theorem (K.-Yobuko-Yu)

$$\begin{split} \operatorname{Mass}(\Lambda_x) &= \frac{p^3}{2^{10} \cdot 3^4 \cdot 5 \cdot 7} \cdot \\ \begin{cases} 2^{-e(p)} p^{2d(t)} (p^2 - 1) (p^4 - 1) (p^6 - 1) & : u \not\in D_t; \\ p^{2d(t)} (p - 1) (p^4 - 1) (p^6 - 1) & : u \in D_t, t \notin C(\mathbb{F}_{p^6}); \\ p^6 (p^2 - 1) (p^3 - 1) (p^4 - 1) & : u \in D_t, t \in C(\mathbb{F}_{p^6}). \end{cases} \end{split}$$

Question

What else can we use all these computations for?

Application: Oort's conjecture

Oort's conjecture

Every generic *g*-dimensional principally polarised supersingular abelian variety (X, λ) over *k* of characteristic *p* has automorphism group $C_2 \simeq \{\pm 1\}$.

Mass formula for supersingular abelian threefolds ${\color{black} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bullet } \bullet$

Application: Oort's conjecture

Oort's conjecture

Every generic *g*-dimensional principally polarised supersingular abelian variety (X, λ) over *k* of characteristic *p* has automorphism group $C_2 \simeq \{\pm 1\}$.

This fails in general: counterexamples for (g, p) = (2, 2) and (3, 2).

Application: Oort's conjecture

Oort's conjecture

Every generic *g*-dimensional principally polarised supersingular abelian variety (X, λ) over *k* of characteristic *p* has automorphism group $C_2 \simeq \{\pm 1\}$.

This fails in general: counterexamples for (g, p) = (2, 2) and (3, 2).

Theorem (K.-Yobuko-Yu)

When g = 3, Oort's conjecture holds precisely when $p \neq 2$.

Application: Oort's conjecture

Oort's conjecture

Every generic g-dimensional principally polarised supersingular abelian variety (X, λ) over k of characteristic p has automorphism group $C_2 \simeq \{\pm 1\}$.

This fails in general: counterexamples for (g, p) = (2, 2) and (3, 2).

Theorem (K.-Yobuko-Yu)

When g = 3, Oort's conjecture holds precisely when $p \neq 2$.

- A generic threefold X has a(X) = 1.
 Its PFTQ is characterised by t ∈ C⁰(k) and u ∉ D_t.
- Our computations show for such (X, λ) that

$$\operatorname{Aut}((X,\lambda)) \simeq \begin{cases} C_2^3 & \text{ for } p=2; \\ C_2 & \text{ for } p \neq 2. \end{cases}$$