Boris Solomyak (University of Bar-Ilan )

Tuesday, January 29, 2019 - 1:30pm to 3:30pm

PDL C-401

Let $\mu$ be a finitely supported measure on

*SL(2,R)*generating a non-compact and totally irreducible subgroup. Furstenberg proved that there is a unique stationary measure for the induced action on the projective line (now often called the "Furstenberg measure''), with a positive Lyapunov exponent. In joint work with M. Hochman, we computed the Hausdorff dimension of the Furstenberg measure, assuming a Diophantine condition on the support of $\mu$.In the introductory talk, I will state the result and explain the background. In the main talk, I will present some ideas from the proof. I will also discuss some follow-up results on the Diophantine property in matrix groups and on the dimension of the support of the Furstenberg measure, joint with Y. Takahashi.