The 2016 confirmation of Einstein's prediction of gravitational waves has put the spotlight back on the importance of curvature for the physics of the universe. While the ability of mass to curve our space has fueled the imagination of many, it is by far not the only instance of warped spaces being important for physics: The materials science of the very small scale -the science of nanostructures and nanoengineering- is one of them. In fact, often these 'small' spaces are very strongly curved, far from what mathematicians call 'Euclidean'; for example two parallel lines may no longer only meet at infinity. Bizarre and exotic spaces with very unusual properties. Until recently, many of these complex spaces defied most people's imagination, but Virtual Reality technology has now been developed to help us immerse in them. Prof Sabetta Matsumoto will take us on a tour -enabled by the latest in Virtual Reality technology- into the innate beauty and mystery of some spaces, such as the cross between a Euclidean straight line and Poincare's hyperbolic plane made popular by Escher's artwork. Real-world applications or technological uses of these mathematical insights may seem to be light-years off, but don't worry, the real world will catch up with the imagination faster than we think.
Elisabetta Matsumoto is an assistant professor in the School of Physics at Georgia Institute of Technology. Her physics research centers around the relationship between geometry and material properties in soft systems, including liquid crystals, 3D printing and textiles. She is also interested in using sewing, 3D printing and virtual reality in mathematical art and education. She is the recipient of an NSF CAREER award. She studied physics at the University of Pennsylvania, earning her BA and MS in 2007 and her PhD in 2011.